Retour

Télécharger le document en PDF

Tous droits de traduction, d'adaptation et de reproduction réservés pour tous pays sans autorisation des auteurs, à l'exception de courts passages destinés à des revues scientifiques et mentionnant la référence d'origine.



THEORIE DE L'ECHANTILLONNAGE COCHLEAIRE






Roland CARRAT

ACCA. Lauréat de l'Académie de Médecine

Médecin dir. hon. Centre d'Audiophonologie Infant.

37 000 Tours. r.carrat@wanadoo.fr



Xavier CARRAT


ACCA. CHU Pellegrin. Bordeaux

Xavier.Carrat@free.fr






SOMMAIRE





AVANT PROPOS




I. THEORIE DE L'ECHANTILLONNAGE COCHLEAIRE





1. Introduction: des conceptions périmées


1.1. les théories classiques de l'audition


1.2. état actuel de la physiologie cochléaire


1.3. la persistance de nombreux paradoxes



2. données fondamentales pour une nouvelle théorie auditive


2.1. nouvelles données de mécanique cochléaire


2.2. la systématisation neuro-sensorielle de la cochlée


2.3. la théorie mathématique de la communication et la théorie de l'échantillonnage.



3. Théorie de l'échantillonnage cochléaire.



3.1. Principes fondamentaux du modèle auditif.


3.2. Echantillonnage cochléaire externe.


3.3. Echantillonnage cochléaire interne.


3.4. Mécanique cochléaire et conduction osseuse. Aspects expérimentaux et implications

physiologiques.


3.5. La troisième fenêtre cochléaire.


3.6. L'unité fonctionnelle cochléaire.


3.7. L'oreille interne est un lecteur code-barre des formes acoustiques membranaires





II. ECHANTILLONNAGE COCHLEAIRE ET PSYCHOACOUSTIQUE




1. champ auditif fréquentiel et échantillonnage cochléaire


2. la limite fréquentielle inférieure d'audibilité


3. la fréquence limite supérieure d'audibilité


4. le seuil auditif au bruit blanc : nouvelle approche.


5. 1000 Hz: fréquence pivot


6. la phase et le timbre d'un son complexe


7. l'énigme du fondamental absent.


8. la couleur tonale des transitoires


9. la sensation tonale de clics répétés




III. ECHANTILLONNAGE COCHLEAIRE ET PHYSIOPATHOLOGIE AUDITIVE




1. Théorie de l'échantillonnage cochléaire et perte auditive.


2. Surdités de perception et échantillonnage cochléaire.


3. Classification des surdités neuro-sensorielles.


4. Traumatisme acoustique et scotome auditif.


5. Echantillonnage cochléaire et seuil auditif au bruit blanc.


6. Les difficultés de perception de la parole avec audiogramme tonal normal


7. Repliement cochléaire (aliasing).


8. Théorie de l'échantillonnage cochléaire et prothèse auditive.


9. Courbes audiométriques paradoxales et échantillonnage cochléaire


10. Codage de la parole. Implants cochléaires et échantillonnage cochléaire


11. Acouphènes, bruit de fond cochléaire et échantillonnage cochléaire.



CONCLUSION



REFERENCES BIBLIOGRAPHIQUES











AVANT PROPOS





Ce document a pour objectif d'exposer le résultat de recherches ayant abouti à une théorie originale de l'audition et plus précisément la Théorie dite de l'Echantillonnage Cochléaire. Il s'agit du condensé d'un ensemble de données publiées dans diverses revues spécialisées depuis 1973 et dans un ouvrage publié à Paris en 1986 (Théorie de l'échantillonnage cochléaire, Arnette éditeur, Paris).


En parcourant la littérature relative à l'audition, on constate que depuis Helmholtz, on admet à la façon d'un dogme irréfutable, que l'oreille effectue une analyse fréquentielle des signaux acoustiques complexes, que chacun des composants possède sa propre localisation sur la membrane basilaire et enfin que chaque fibre nerveuse auditive est le vecteur d'une fréquence donnée (FC, ou Fréquence Caractéristique). C'est faire peu de cas des acquis en d'autres domaines, par exemple en psychoacoustique, en neurophysiologie, en pathologie auditive, etc. dans lesquels on relève de multiples incompatibilités ou paradoxes, et qui contredisent cette interprétation tonotopique de la fonction de l'oreille.


De nouvelles données expérimentales conduisent à reconsidérer ce qui paraissait bien établi jusqu'à ce jour par les spécialistes de l'audition, tant dans le domaine de la psychoacoustique que dans celui de la physiopathologie auditive. Le lecteur découvrira en effet plusieurs concepts originaux, concernant par exemple, le mécanisme de la conduction osseuse et sa relation avec la troisième fenêtre cochléaire, l'unité anatomo-fonctionnelle cochléaire, une classification originale et inédite des surdités neuro-sensorielles, un modèle du mécanisme cochléaire en réponse à un bruit blanc, une explication de l'étrange fondamental absent, une nouvelle interprétation du traumatisme acoustique, un modèle pathogénique des acouphènes, etc.


Tous les chapitres – ou presque – sont accompagnés d'illustrations, tableaux et figures destinés à soulager le texte. Même s'il ne s'agit que de condensés, le regroupement de ces publications dispersées permet d'avoir une vision synthétique de cette nouvelle théorie de l'audition. Ils seront de quelque utilité, non pas tant pour les personnes déjà familiarisées dans ce domaine, que pour celles qui souhaitent élargir leurs connaissances au delà de leur spécialité, ou enfin pour les esprits ouverts à de nouveaux courants d'idées.


Il ne fait pas de doute que certains scientifiques sont ou seront en désaccord avec ce nouveau concept, ce qui n'a rien d'étonnant lorsque l'esprit doit se remettre en cause. En témoigne l'attitude des comités de lecture de nombre de revues qui répugnent à reconsidérer "ce qui paraît bien établi". Le praticien, par contre, confronté à la réalité quotidienne des sourds, y trouvera certainement matière à réflexion.







I. THEORIE DE L'ECHANTILLONNAGE COCHLEAIRE




1. Introduction : des conceptions périmées.



1. 1. Les théories classiques de l'audition.



Depuis la théorie de la localisation tonale cochléaire (tonotopie) formulée par von Békésy en 1928 [1, 2, 3], de nombreuses modifications ou de nouvelles théories ont été proposées. On peut citer:


- la théorie de la volée (Wever, 1930)[70, 71]

- l'inhibition latérale (von Békésy, 1951)[3]

- le second filtre (Evans et Wilson, 1973)[24]

- la rétroaction mécanique membranaire (Gold, 1948)[28]

- l'intervention des centres auditifs centraux (Goldstein, 1978)[29], (Wightman,1973) [72], (Evans, 1978) [23]

- la détection de la périodicité (Schouten, 1940)[53]

- l'analyse impulsionnelle (Huggins, 1952)[32], (Lafon, 1962)[40]

- la contractilité membranaire des cellules ciliées externes (Kemp, 1978, 1986)[35, 36].



1. 2. Etat actuel de la physiologie cochléaire


Actuellement, on admet que la stimulation de la cochlée par un son d'intensité légère ou moyenne serait à l'origine d'une cascade d'évènements:


- une propagation d'ondes de pression dans les liquides labyrinthiques responsables des déplacements de la membrane basilaire (MB). Le siège du déplacement maximum dépend de la fréquence du son stimulant, à la base de la cochlée pour les sons aigus, vers le sommet pour les sons graves. Cependant cette tonotopie n'est pas très précise et ne permet pas une bonne sélectivité fréquentielle (fig. 1),

- un déplacement relatif de la membrana tectoria par rapport au plateau des cellules ciliées externes (CCE),


- une dépolarisation des CCE par un effet de cisaillement des cils [48]. L'ouverture des canaux ioniques des cils provoque la dépolarisation de la cellule sensorielle;


- une contraction des CCE (mécanisme actif)[27, 5] qui accentue le déplacement maximum de la MB en une zone très étroite et affine la sélectivité fréquentielle [36],


- une stimulation très localisée des cellules ciliées internes (CCI) produite par cette amplification du déplacement mécanique,


- une transmission du message aux synapses de la base des CCI et envoi d'information par les fibres nerveuses au système nerveux central (SNC) [52]. A ce stade, la médiation de nombreux intermédiaires chimiques exerce probablement une action régulatrice sur le système nerveux efférent [51].


Au total,


- les propriétés contractiles des CCE seraient à la base de la sélectivité fréquentielle cochléaire. On lui attribue le rôle d'un second filtre;


- les CCE permettraient de moduler l'information acoustique parvenant aux CCI,


- les CCI seraient de simples transducteurs passifs chargés de traduire l'énergie acoustique en phénomène bioélectriques,


- chaque fibre du nerf auditif véhiculerait deux sortes informations: la fréquence et l'intensité,


- à chaque fibre cochléaire serait dévolue une fréquence (Frequency Characteristic: FC),


- le codage de l'intensité mettrait en jeu deux mécanismes: d'une part la cadence des spikes parcourant chaque fibre, d'autre part le nombre de fibres stimulées (l'un et l'autre augmentant avec l'intensité).


Grâce à de multiples ajustements proposés au fil des années, le concept de von Békésy de la tonotopie cochléaire reste encore largement admis.






Fig. 1. Pattern des déplacements de la membrane basilaire en réponse à un signal sinusoïdal.


Selon les théories classiques de l'audition, au fur et à mesure que la fréquence s'élève, le maximum de l'élongation membranaire se déplace vers la base de la cochlée. (a) basses fréquences, (b) fréquences élevées. La cochlée effectue une décomposition des sons complexes (d'après Loeb G., 1985).



1. 3. La persistance de nombreux paradoxes.


Cependant, de nombreuses observations demeurent sans explication [12]. On peut citer:





Fig. 2. La tonalité d'un bruit blanc au seuil auditif.


Lorsqu'on diminue le niveau sonore d'un bruit blanc jusqu'à la limite d'audibilité, sa tonalité ne change pas, alors qu'elle devrait progressivement se rapprocher de celle d'une bande fréquentielle centrée autour de 1000 – 2000 Hz.



- en anatomie: l'antagonisme évident entre l'irrégularité du diamètre de la cochlée osseuse et la présence d'une série progressive de résonateurs, l'orientation contraire des CCE et des CCI qui suggère des fonctions opposées, l'écart très important du nombre des neurones afférents externes et internes [58, 59, 47], l'incompatibilité entre une discrimination fréquentielle fine et l'étendue sur plusieurs rangées de cellules des dendrites des neurones afférents externes, la discordance entre une densité neuronale constante tout au long de la MB et une discrimination fréquentielle restreinte à la base de la cochlée;


- en anatomo-pathologie, la discordance fréquente entre le siège de lésions neuro-sensorielles et leur localisation membranaire théorique (presbyacousie, surdités par ototoxiques, traumatisme acoustique) [49, 10],(fig. 3);


- en mécanique cochléaire, l'impossibilité de relier la tonotopie au gradient de rigidité membranaire [33]. Il en est ainsi à la base de la cochlée où la diminution de l'amplitude des vibrations pour des sons de fréquence élevée conjuguée à l'augmentation de la rigidité membranaire ne peuvent qu'annuler toute stimulation mécanique des cellules;


- en électrophysiologie, le rôle primordial de l'enveloppe du signal, par opposition à son contenu, sur la réponse de la fibre nerveuse isolée ou du nerf entier, ou encore l'impossibilité d'obtenir un audiogramme tonal objectif par recueil des BERA à partir de clics ou de clics filtrés

(fig. 4).




Fig. 3. Audiogramme et cytocochléogramme d'un sujet devenu malentendant par otites récidivantes (d'après Walby A.P., 1983)


On notera l'absence de corrélation entre la perte auditive aux sons purs et la localisation membranaire des zones lésées (en noir, les parties altérées sont exprimées en pourcentage)







Fig. 4. Courbes d'accord (fréquentiel) et forme du signal.


Pour chaque fibre, on peut obtenir à partir de tone-bursts répétitifs et de fréquence centrale constante, des courbes d'accord fréquentiel (FTC : Frequency Threshold Curves) caractérisées par leur forme en V.

- en a) courbes d'accord de fibres isolées (trait plein). Au sommet de chaque courbe correspond une Fréquence Caractéristique (FC). L'ensemble de ces sommets dessine une courbe (en traits pointillés) qui correspond au potentiel d'action cochléaire (CAP audiogram) pour une audition normale chez le cobaye;

- en b) lorsqu'on a recours à des stimuli dont on modifie la forme de l'enveloppe en agissant sur les temps d'installation et de disparition (rise et fall times), la réponse est elle-même modifiée et peut même disparaître.(Harrisson R.V., Evans E.F., 1977). La forme du signal est plus importante que son contenu fréquentiel. Il en est ainsi pour la FTC : le front de différents tone-pips se modifie avec la fréquence, et pour le potentiel d'action cochléaire (CAP audiogram): pour une même fréquence, la réponse est uniquement déterminée par les temps d'attaque et la disparition du signal.



2. Données fondamentales pour une nouvelle théorie auditive



Ainsi, devant les difficultés soulevées par l'application des théories classiques de l'audition, la recherche d'un autre modèle de l'audition se justifie pleinement. Cette démarche est d'autant mieux recevable qu'il n'est pas possible de connaître avec précision le mode de codage de l'oreille interne, que ce soit par le calcul (convolution) ou par expérimentation neurophysiologique (du fait de la discontinuité du rythme des spikes et de l'impossibilité de recueillir simultanément et séparément la totalité des réponses des fibres nerveuses auditives).


Fort heureusement, l'audiologiste dispose actuellement d'une somme considérable de données dont le rapprochement permet de concevoir un modèle original de fonctionnement cochléaire, modèle susceptible d'intégrer celles provenant de domaines aussi divers que celui de la mécanique cochléaire expérimentale, de la théorie de l'information et de la communication, du traitement du signal, de la micro-anatomie, de la neurophysiologie, etc.


Elles peuvent être regroupées en trois chapitres:

- les données les plus récentes de mécanique cochléaire,

- la systématisation neurosensorielle de l'oreille interne,

- la théorie mathématique de la communication et la théorie de l'échantillonnage du signal.



2. 1. Nouvelles données de mécanique cochléaire [15, 17, 8, 9] (tableau I).



Les réponses vibratoires de la MB observées sur plusieurs modèles mécaniques cochléaires dépendent de nombreux paramètres. Lors de l'expérimentation, certaines conditions anatomiques et fonctionnelles propres à l'oreille interne doivent être scrupuleusement respectées, telles que:

- l'absence de fixation de la MB à son extrémité distale (comme au niveau de l'hélicotrema normal) (fig. 5, 6, 7),

- l'emploi de liquides ayant un degré de viscosité identique à celui de l'oreille interne (fig. 8),

- une similitude de dynamique entre l'oreille et les modèles (nombres de Reynolds égaux),

- le recours à des signaux soigneusement calibrés (le signal obtenu à partir d'un diapason entretenu électriquement n'est pas sinusoïdal, mais comporte un grand nombre de transitoires)(fig. 9).


Sous réserve de ces conditions expérimentales, on observe la production d'une onde propagée, mais, fait essentiel, la forme de cette onde diffère selon le type de signal utilisé (fig. 10):


1. pour un signal sinusoïdal donné, la membrane réagit par des oscillations sinusoïdales réparties sur la totalité de la membrane et dont l'enveloppe ne présente pas de déviation maximum. L'amplitude des vibrations augmente avec l'intensité. Lorsque la fréquence du stimulus croît, le nombre d'ondes augmente, et simultanément l'enveloppe de ces ondes se rapproche de l'axe de la membrane jusqu'à disparaître pour une fréquence limite supérieure du signal (fig. 11);


2. pour un signal transitoire, on observe la production d'une onde propagée amortie en allant de la base vers l'apex. L'amplitude et l'étendue de cette onde propagée dépend de l'énergie du signal et de la rigidité de la MB (fig. 12);


3. pour un signal aléatoire, la membrane est le siège de vibrations aléatoires disséminées tout au long de la membrane. L'amplitude de ces vibrations varie en proportion directe avec l'intensité du signal et l'élasticité de la membrane. Le pattern de ces vibrations change avec la cadence de l'éclairement stroboscopique: l'aspect ondulatoire de la membrane est flou par rapport à celui d'un signal sinusoïdal pur (fig. 13);


Si l'une de ces conditions expérimentales n'est pas respectée (forte viscosité, fixation de l'extrémité distale de la membrane, signal mal calibré), on retrouve facilement le pattern classique de l'onde propagée. On n'observe une déviation maximum des réponses vibratoires membranaires que pour des signaux transitoires. Enfin, et contrairement aux données classiques, on ne retrouve aucune localisation tonale pour des sons purs ou des vibrations aléatoires.




Tableau I





Fig. 5. Modèle mécanique de von Békésy (1928)[2].


Dans ce modèle: à l'inverse des données anatomiques concernant l'hélicotréma, la partie distale de la membrane est fixe; les liquides ont une forte viscosité (glycérine pure); le diapason entretenu électriquement ne génère pas un signal sinusoïdal pur, mais un signal qui comporte de nombreux transitoires. Autant de paramètres anormaux qui entraînent nécessairement une modification des patterns de la réponse membranaire.




Fig. 6. Modèle mécanique de Tonndorf.


Mêmes observations que pour le modèle de von Békésy, à l'exception du signal utilisé (d'après Tonndorf, 1957 [ 44])






Fig. 7. Photographie de l'extrémité apicale de cochlée du cobaye (hélicotréma).


Un fil très fin a été introduit dans la rampe vestibulaire, sous l'extrémité arquée et libre de la membrane basilaire.(Carrat R., 1986) [20].





Fig. 8. Reproduction de l'onde propagée décrite par von Békésy.


Le remplissage des cavités du modèle (rampes) par un liquide de forte viscosité (glycérine) entraîne un amortissement considérable de l'onde propagée, même pour un signal sinusoïdal (et même si l'extrémité de la membrane élastique reste libre). Cette condition expérimentale ne respecte évidemment pas le fonctionnement normal de la cochlée (Carrat R., 1979) [32].







Fig. 9. Analyse fréquentielle du signal obtenu à partir d'un diapason entretenu électriquement:


En a: avec un faible couplage mécanique, le signal est quasiment sinusoïdal;

En b: avec un couplage mécanique important, on obtient un spectre de choc d'énergie élevée.

(Carrat R. et coll., 1978 [45], Mercier J., 1962 [46]).









fig. 10 a et b. Modèles mécaniques de Carrat R. (1979).









Fig. 11. Réponse membranaire à un signal sinusoïdal. (Carrat R, 1979). On note que:


- la membrane est le siège d'oscillations sur toute sa longueur, quelle que soit la fréquence,

- l'amplitude des vibrations est la même partout,

- cette amplitude diminue lorsque la fréquence augmente.









Fig. 12. Réponse membranaire à un signal transitoire.


On observe la production d'une onde propagée pseudo-sinusoïdale qui s'amortit plus ou moins rapidement. L'amplitude des vibrations et l'étalement varient avec les paramètres du signal (I, t.). En haut et en bas: réponses très amorties; au milieu: réponse peu amortie ( Carrat R., 1975 [47]).








Fig. 13. Forme de la réponse membranaire à des signaux aléatoires.


Sous éclairage stroboscopique, la réponse a un aspect d'allure sinusoïdale qui varie avec la cadence de l'éclairement. L'amplitude maximum des déplacement siège à l'extrémité distale, la plus élastique (la distribution de l'énergie étant uniformément aléatoire, la réponse maximale siège en regard de la zone de moindre rigidité). Enfin la membrane a un aspect flou, comme animée de frémissements. En modifiant la cadence de l'éclairement en provenance du stroboscope, on ne trouve jamais de zone au niveau de laquelle il pourrait se produire un déplacement membranaire maximum. Si le modèle effectuait une analyse fréquentielle, on devrait observer une zone d'amplitude maximum se déplaçant avec la fréquence. Ces données sont absolument incompatibles avec le concept d'une tonotopie.(Carrat R., 1979 [31, 32]).



2. 2. La systématisation neuro-sensorielle de la cochlée.



On a longtemps admis que la majeure partie du nerf auditif entrait en relation avec les CCE, celles-ci étant de loin les cellules de Corti les plus nombreuses. On a de la sorte négligé le rôle et l'importance des CCI.


Actuellement, de nombreux documents font état d'une dualité entre les système afférent interne et externe [58, 59,60,61, 62, 63, 64, 65, 46, 47].


Schématiquement:


- les CCI, les moins nombreuses, entrent en connexion avec la majeure partie des fibres nerveuses afférentes. Chaque fibre est connectée à une seule CCI, mais chaque CCI est en relation chez l'homme avec environ vingt terminaisons nerveuses;

- les CCE, les plus nombreuses, sont à l'inverse connectées à un petit nombre de fibres afférentes. Chaque fibre est connectée par ses ramifications à une dizaine de CCE et chaque CCE est connectée à plusieurs fibres collatérales (fig. 14);

- en ce qui concerne le système efférent olivo-cochléaire, le type de terminaison diffère s'il s'agit de la CCE ou de la CCI. (les terminaisons nerveuses entrent directement en contact avec la base de la cellule ciliée externe mais sont plaquées sur le côté de la fibre afférente pour la cellule ciliée interne) [34, 37, 66, 57].


Cette systématisation suggère l'existence d'un mécanisme feed-back régulateur (fig. 15, 16, 17).



Fig. 14. Systématisation du système nerveux auditif afférent.












Fig. 15. L'information fréquentielle ne peut être dévolue au système cilié externe.


Chaque cellule ciliée externe étant en connexion avec plusieurs fibres nerveuses efférentes, une sélectivité fréquentielle strictement localisée au niveau d'une cellule ciliée est mécaniquement impossible. Inversement, chaque fibre nerveuse efférente étant reliée à plusieurs cellules ciliées de différentes rangées, on ne peut concevoir l'existence une sélectivité fréquentielle propre à chaque fibre nerveuse sans l'intervention très hypothétique d'un second filtre.







Fig. 16. Représentation schématique des jonctions neuro-sensorielles auditives.


On notera:

- le nombre élevé de vésicules des fibres efférentes (E),

- le siège différent de cette jonction pour le système cilié externe ou interne.







Fig. 17. La systématisation nerveuse auditive évoque un mécanisme rétroactif (feed-back). En vert: fibres afférentes en provenance du système cilié interne, en rouge: fibres afférentes en provenance du système cilié externe, en bleu: système efférent rétro-actif.





2. 3. La théorie mathématique de la communication et la théorie de l'échantillonnage.







Fig. 18. Schéma général de la communication appliqué à l'audition et modèle fonctionnel du système auditif. d'ap. Leipp E., 1977, [42]).


Le système auditif forme une chaîne de communication des messages acoustiques. Il comporte différents types de maillons: mécanique (oreille externe et oreille moyenne), électronique (convertisseur analogique-digital, mémoire centrale), traitement central chargé d'identifier, de comparer et d'associer les images transmises. Les théories classiques de l'audition diffèrent entre elles par leur conception du codage: (résonateurs cochléaires, cochlée assimilée à un microphone, etc.) et par le codage de la transmission nerveuse (courant microphonique, rythme de décharge des influx temporel ou spatial, etc.).




Le système auditif est l'un des cinq canaux de communication de l'organisme ouverts sur le milieu extérieur. Dans ce canal, l'oreille n'est que l'un des maillons d'une chaîne chargée de transmettre les messages de nature acoustique. Par sa nature, le système auditif entre dans le cadre de la théorie générale de l'information et de la communication.


Bien que déjà entrevue par Hartley R.W., Nyquist H., Einstein A., [45] la théorie générale de la communication ne fut nettement formulée qu'en 1948 par Shannon C.E. [56], puis par Weaver W. et Shannon C.E. en 1949 [69, 56].


Elle implique:

- d'une part l'existence d'une chaîne de communication dont les constituants sont bien connus: émetteur, canal, récepteur, etc. (fig. 18),

- d'autre part la transformation par cette chaîne de la forme du message sans modifier son contenu.


L'essentiel est de réduire le message en une combinaison de signaux 0 ou 1 (tout ou rien, on or off). La valeur de ce message dépend de l'imprévisibilité relative des combinaisons successives de 0 ou 1 (Moles A.)[45, 22].


De plus, tout signal continu peut être réduit à un système discret formé d'un certain nombre de signaux discontinus susceptibles d'être distingués et analysés. En d'autres mots, tout signal continu peut être significativement représenté par échantillonnage d'éléments discrets à intervalles réguliers.




Fig. 19. Echantillonnage temporel. Numérisation (quantification).


L'amplitude exacte d'un échantillon isolé peut avoir théoriquement une infinité de valeurs. Mais, du fait des échelons d'amplitude, ou quanta, elle est remplacée par un nombre entier d'amplitudes élémentaires, aussi proches que possible de l'amplitude réelle. C'est la quantification.





Fig. 20. Analyse spatiale d'une forme avec des résolutions décroissantes.


En haut, numérisation de l'amplitude.

En bas, échantillonnage d'un pattern bidimensionnel avec résolutions décroissantes. On obtient les différents patterns par application sur le modèle d'une grille de plus en plus grossière. Lorsqu'une portion du modèle tombe dans la surface d'une maille du réseau, le carré est coloré en noir dans sa totalité. Sinon il reste blanc. On peut ainsi numériser un pattern spatial, une forme, à partir d'éléments discrets, ce qui facilite le stockage, le transfert et le traitement de l'information.



Cependant, la fréquence d'échantillonnage doit être au moins double de la fréquence maximum du signal.


Par extension, le théorème de Shannon peut s'appliquer à un l'échantillonnage spatial d'une forme (fig. 19, 20) (tableau II).




On peut représenter une fonction continue en convertissant cette fonction en une suite de valeurs discrètes ("time series"). Ce procédé est connu sous le terme d'échantillonnage. Pour que cette suite de valeurs représente correctement la fonction d'origine, la fréquence de l'échantillonnage doit être au moins le double de la fréquence la plus élevée des composantes du signal.

Selon le théorème de l'échantillonnage développé par Nyquist (1928), il suffit de deux échantillons par cycle pour caractériser une bande limitée d'un signal.

La fréquence du signal qui correspond à la cadence minimum d'échantillonnage est encore appelée fréquence de Nyquist (soit la moitié de la fréquence minimum d'échantillonnage).

La durée maximum séparant les échantillons à la fréquence minimum d'échantillonnage est appelée intervalle de Nyquist.

La plupart des procédés de communication ont recours à un échantillonnage, que ce soit dans le temps ou dans l'espace. Dans ce dernier cas, on détecte différents points de la forme ce qui permet de reconstruire avec des pas plus ou moins grands le pattern primitif sur une échelle ou un réseau.

La conversion de la fonction continue en une suite de valeurs est appelée numérisation (quantization). Ces valeurs sont habituellement exprimée par des nombres entiers. Elles permettent le codage de l'information échantillonnée au moyen de nombres.

Enfin, Shannon (1949) dans la Théorie Générale de l'Information, a montré que tout message peut être réduit à la combinaison (arrangement) de signaux binaires 1 ou 0, ou d'états on-off (il en est ainsi de la réponse tout ou rien de la fibre nerveuse).


Tableau II





3. Théorie de l'échantillonnage cochléaire.



3.1. Principes fondamentaux du modèle auditif.



Schématiquement, la cochlée a pour fonction de coder un signal continu, le signal acoustique, en des signaux discontinus, des impulsions, lesquels en se propageant sur les fibres nerveuses transmettent l'information aux centres corticaux.


Il s'agit donc d'un convertisseur analogique-digital, les cellules de Corti formant le relai interface.


En réponse aux vibrations sonores captées et transmises par la chaîne tympano-ossiculaire

aux liquides de l'oreille interne, la membrane basilaire est le siège de déformations instables, de formes ou patterns qui se modifient constamment en fonction des paramètres du signal. Les cellules de Corti, réparties à sa surface, se comportent comme des capteurs de mouvement chargés de transformer l'énergie mécanique (acoustique) en énergie électrique (dépolarisation membranaire) (fig. 21, 22). La disposition de ces capteurs n'est pas la même selon le système cilié considéré: alors qu'ils sont répartis sur trois rangées pour le système cilié externe et dessinent une mosaïque, un réseau, ils sont alignés en une seule rangée pour le système cilié interne (fig. 23).


Comme chaque capteur n'occupe qu'une portion de surface, l'analyse de la forme membranaire cochléaire comporte un fractionnement de l'image, une fragmentation bidimensionnelle pour les CCE (mosaïque), linéaire pour les CCI (assimilable à un peigne de Dirac). En d'autres termes, l'analyse des formes membranaires ou patterns, procède d'un échantillonnage spatial effectué par les CC et les fibres afférentes correspondantes.


En outre, comme ces patterns changent en permanence – sinon ils ne transporteraient aucune information – et comme chaque fibre nerveuse ne répond que par intervalles de temps (fenêtre temporelle), l'analyse des déformations successives de la membrane basilaire est également temporelle. Il s'agit d'un échantillonnage temporel.


Au total, l'oreille est un convertisseur analogique-digital qui analyse les formes acoustiques membranaires au moyen d'un échantillonnage spatio-temporel.


En corollaire, la finesse de l'analyse par l'échantillonnage spatial dépend de la densité surfacique ou linéaire des capteurs, c'est à dire du pas d'échantillonnage, mais il ne dépend pas de leur nombre total. "L'acuité" de l'analyse est d'autant meilleure que les capteurs sont plus rapprochés, et que le pas est plus petit. Dans le cas de l'échantillonnage temporel, la finesse de l'analyse dépend de la cadence de l'échantillonnage.


Il convient enfin d'ajouter que de nombreuses données anatomiques et histologiques, telles que l'orientation convergente des CCI et CCE autour du tunnel de Corti [42], la systématisation opposée du système nerveux afférent interne et externe [62], ou encore la disparition sélective des CCI de la souris mutante [21], plaident en faveur d'une dualité fonctionnelle des systèmes ciliés interne et externe (tableau III)






Tableau III










Fig. 21. Les cellules ciliées sont des capteurs de mouvement sensibles à l'accélération.


La dépolarisation résulte de la flexion et de l'effet de cisaillement des stéréocils. Au cours de chaque cycle, la flexion des stéréocils se produit dans deux directions opposées, mais seule l'une d'elles entraîne une dépolarisation. Les cellules ciliées analysent par échantillonnage spatial les déformations de la membrane basilaire.





Fig. 23. L'onde de pression acoustique qui se propage dans les liquides provoque un déplacement dans les trois plans de l'espace: longitudinal (oscillations de la membrane basilaire), vertical (ascension des cellules ciliées, et radial (flexion des stéréo cils).





Fig. 24. Le pattern, ou image, ou forme cochléaire, est composé d'éléments discrets (ou pixels) de répartition linéaire pour le système cilié interne, bidimensionnelle (spatiale) pour le système cilié externe.


Le mécanisme de transduction acoustico-neural consiste, pour le premier, en une analyse linéaire par utilisation d'un peigne d'échantillonnage et pour le second en une analyse spatiale par utilisation d'une grille d'analyse. Le pattern cochléaire est comparable à celui utilisé en typographie: les carreaux de mosaïque, les motifs d'une broderie, les enseignes lumineuses des frontons de théâtre tracent depuis longtemps des caractères parfaitement reconnaissables à partir d'éléments discrets.




3. 2. Echantillonnage cochléaire externe.



En raison d'une part de l'interconnexion des CCE entre elles, ce qui élargit obligatoirement le pas d'échantillonnage, et en raison d'autre part du nombre restreint de fibres nerveuses auditives afférentes (1500 environ, alors qu'il en faudrait théoriquement de 30 à 40 000 pour transmettre les fréquences les plus élevées de l'information), l'échantillonnage externe est en conséquence inadapté à la discrimination des fréquences les plus hautes et du médium


Inversement, l'interconnexion de plusieurs CCE avec chaque fibre nerveuses afférente est compatible avec un mécanisme de sommation spatiale. Ce système apparaît bien adapté à la transmission de l'information du niveau sonore par échantillonnage de la forme acoustique membranaire, le recrutement d'un nombre de cellules (et de rangées) étant d'autant plus grand que le niveau sonore est plus élevé..


Par ailleurs, la systématisation nerveuse efférente peut être compatible avec un mécanisme régulateur rétro-actif (feed-back) (fig. 24, 25).






Fig. 24. Systématisation de la fibre auditive afférente externe.


- la distribution en spirale des fibres afférentes externes ne permet pas un échantillonnage très fin des CCE.

- les connexions dendritiques d'une même fibre au niveau des trois rangées de CCE évoque un mécanisme de recrutement dans l'activation des fibres.








Fig. 25. Echantillonnage du niveau sonore.


Les CCE sont disposées en un réseau. L'échantillonnage effectue une sommation des réponses de une à trois cellules par rangée. Comme chaque fibre nerveuse afférente externe est en connexion avec chacune des trois rangées de CCE, et statistiquement, à environ trois cellules dans chacune d'elle, elle est théoriquement capable de transmettre une information de 9 degrés de niveau (Fl, Fm, Ff, Ml, Mm, Mf, etc.) (l = léger, m = moyen, f = fort).




3. 3. Echantillonnage cochléaire interne.



La séparation fonctionnelle de chaque CCI et la présence d'un nombre suffisamment élevé de fibres afférentes (environ 28 000) autorise l'application du théorème de Shannon . A l'inverse du système cilié externe, un échantillonnage du système cilié interne à la fois spatial et temporel rend possible une discrimination fréquentielle.


Echantillonnage spatial. Pour une réponse vibratoire membranaire de type sinusoïdal, l'échantillonnage est déterminé par l'espace séparant deux groupes de CCI stimulées simultanément (une longueur d'onde, donc deux pas). Plus cet intervalle est petit, plus la fréquence échantillonnée est élevée.

A la limite fréquentielle maximum, seule une cellule sur deux est stimulée. Inversement, à la limite fréquentielle inférieure, il n'existe plus que deux groupes de cellules ciliées qui sont stimulés alternativement (fig. 26, 27).







Analyse temporelle. En raison de sa période réfractaire, chaque fibre nerveuse ne peut théoriquement transmettre plus de 1 000 impulsions par seconde (moins dans la réalité). Au dessus de 1 000 Hz, la transmission de l'information n'est possible que par l'intervention d'un mécanisme complémentaire, celui d'un multiplexage. C'est ce même mécanisme d'activation alternée, de rotation, des fibres afférentes connectées avec chaque capteur qui a déjà été proposé par Wever en 1930 (fig. 28).





Fig. 26. Echantillonnage spatial de la hauteur.


L'information de la hauteur est dévolue à l'échantillonnage du système cilié interne. Elle est complétée en outre par un échantillonnage temporel réalisé par multiplexage des fibres afférentes.












Fig. 27. Echantillonnage spatial du système cilié interne.







Fig. 28 a. Le codage spatio-temporel du système cilié interne est le support de l'information de fréquence.


Le système cilié interne comporte 3 000 à 4 000 capteurs en ligne, auxquels sont connectés environ 35 000 fibres nerveuses auditives afférentes. Le pas d'échantillonnage intercellulaire effectue une analyse spatiale de la fréquence et la période réfractaire de chaque fibre détermine le pas temporel (1 ms).





Fig. 28 b. Réponse temporelle par multiplexage en regard d'une cellule ciliée interne (CCI).


A la limite fréquentielle supérieure du champ auditif (16 000 à 20 000 Hz), chaque CCI est dépolarisée 16 à 20 fois en 1 ms. En raison de la période réfractaire de toute fibre nerveuse, l'information temporelle ne peut être transmise que par activation alternée d'un groupe minimum de 16 à 20 fibres en regard de chaque cellule. Mais il ne s'agit que de l'information concernant chaque demi-cycle d'une vibration (16 à 20 impulsions). Il en est de même pour l'autre demi-cycle. Le codage de l'information d'un cycle complet nécessite donc l'intervention d'une série de 32 à 40 impulsions. Cette condition répond bien aux exigences du théorème de Shannon par lequel l'échantillonnage doit avoir une fréquence double de la fréquence échantillonnée.









Le système cilié interne comporte 3 000 à 4 000 capteurs disposés en une seule rangée

Chaque capteur entre en connexion avec 16 à 20 fibres nerveuses afférentes

Le pas d'échantillonnage des capteurs conditionne l'analyse spatiale de la fréquence

La période réfractaire de la fibre nerveuse conditionne l'échantillonnage temporel (1 ms)

Le couplage des CCI et des neurones détermine une analyse spatio-temporelle de la fréquence



Tableau IV









Tableau V




3.4. Mécanique cochléaire et Conduction Osseuse. Aspects expérimentaux et implica-

tions physiologiques.




On admet classiquement que la transmission des sons tant par voie aérienne que par voie osseuse est à l'origine de différences de pression entre les rampes tympanique et vestibulaire, elles mêmes responsables de mouvements membranaires sous forme d'ondes propagées identiques dans l'un et l'autre cas. Trois facteurs interviendraient dans la transmission osseuse: l'inertie ossiculaire, la déformation de la capsule osseuse labyrinthique et une composante tympano-ossiculaire.


Pour expliquer l'existence de la sélectivité fréquentielle par CO, les théories classiques proposent deux mécanismes:


- d'une part que la sélectivité résulterait des propriétés physiques de la MB: la diminution de son gradient de rigidité provoquerait un déplacement du maximum d'amplitude selon la fréquence. Il se situerait près de la base pour les fréquences élevées et vers l'apex pour les fréquences les plus basses.


- d'autre part, que chaque fibre posséderait une fréquence dite caractéristique (FC). La réponse de chaque fibre serait "en accord" avec la fréquence du son stimulant (tuning curves des fibres isolées et leur CF)


Ces interprétations soulèvent l'une et l'autre des objections majeures:


- de même que par voie aérienne, la tonalité d'un bruit blanc transmis par voie osseuse ne change pas quand l'intensité décroît, alors qu'au voisinage du seuil d'audibilité, elle devrait prendre celle d'un bruit coloré centré autour de 1000-2000 Hz (voir la courbe de Wegel)(fig. 2);


- la tonalité d'un son pur transmis par CO ne change pas avec l'augmentation de l'intensité, alors que cette tonalité devrait devenir celle d'une bande de bruit en raison de l'élargissement de la zone stimulée autour du point théorique de localisation de ce son pur;


- le concept d'une spécificité fréquentielle des neurones auditifs n'est absolument pas compatible avec les données de la neurophysiologie. Comme un neurone ne peut transmettre plus de 1000 spikes par seconde, compte tenu de sa période réfractaire (1 ms), on ne comprend pas pourquoi une fibre nerveuse pourrait transmettre des sons de fréquence supérieure à 1000 Hz, ni pourquoi le neurone auditif ferait exception aux lois de physiologie générale,


- l'expérimentation sur modèles mécaniques cochléaires montre que, si le signal acoustique est transmis par l'intermédiaire du châssis du modèle (situation similaire à celle d'une CO), les modalités de la réponse membranaire sont identiques à celles observées lors d'une transmission par la fenêtre ovale (voie aérienne): absence de localisation fréquentielle en réponse à un son pur, production d'une onde propagée en réponse à un signal transitoire. Le blocage d'une fenêtre entraîne la disparition des ondes membranaires, mais, fait essentiel, l'ouverture d'une nouvelle fenêtre, en un endroit quelconque du modèle, provoque une réapparition des ondes membranaires (en accord avec les constatations de von Békésy ).


Ces données expérimentales montrent que:

- la CO n'est pas possible sans la participation d'au moins deux fenêtres fonctionnelles cochléaires,

- lors du blocage de l'une des fenêtres (comme dans l'otospongiose), on doit admettre l'existence d'une troisième fenêtre fonctionnelle cochléaire, nécessaire et suffisante pour assurer une réponse cochléaire.




3. 5. La troisième fenêtre cochléaire.



L'expérimentation sur modèles mécaniques cochléaires montre que les mouvements de la membrane basilaire ne sont observables que si les deux fenêtres ovale et ronde sont fonctionnelles. L'emplacement de ces fenêtres ne modifie pas la réponse oscillatoire membranaire.


D'autre part, si le signal acoustique d'entrée, excitateur, n'est plus transmis au travers de l'une de ces deux fenêtres, mais par application directe sur le bâti du modèle mécanique, de la même façon qu'il le serait en pratique audiométrique pour un test en conduction osseuse, on n'observe là encore une réponse membranaire que si ces mêmes fenêtres sont restées fonctionnelles.


Inversement, le blocage de l'une d'entre elles provoque une disparition des ondes membranaires. Par analogie, ces résultats montrent que la transmission acoustique par voie osseuse n'est possible que s'il existe au moins deux fenêtres fonctionnelles, et cela quelque soit leur emplacement au niveau de la capsule osseuse.


Comme dans toute surdité de transmission, les pertes auditives en rapport avec un blocage ossiculaire (otospongiose, certaines malformations congénitales d'oreille, etc.) sont caractérisées par une élévation du seuil auditif aux sons purs par voie aérienne, alors que le seuil audiométrique par voie osseuse reste normal. En conséquence, la persistance d'une sensation sonore normale en conduction osseuse ne peut se concevoir sans l'intervention d'une troisième fenêtre cochléaire. Ce rôle peut être attribué à l'un quelconque des orifices de la capsule cochléaire: aqueduc cochléaire, canal endolymphatique, ou méat auditif interne (fig. 29).


Au total, ce concept d'une troisième fenêtre cochléaire ne peut être séparé de celui concernant la CO. Bien qu'il ait été déjà entrevu, il n'avait jamais reçu à ce jour de confirmation expérimentale.




.

Fig. 29. Schématisation de la troisième fenêtre cochléaire.

Lorsque la platine de l'étrier n'est plus mobile, chaque orifice de la capsule otique, à l'exception de la fenêtre ronde, peut être assimilé à une fenêtre fonctionnelle. Il en est ainsi du canal endolymphatique relié au sac endolymphatique (1), du foramen situé à l'extrémité du méat auditif interne (2), enfin de l'aqueduc cochléaire (3).




3. 6. L'unité fonctionnelle cochléaire.



La physiologie oculaire et la physiologie cochléaire présentent d'étroites ressemblances. Il en est ainsi pour l'angle séparateur minimum dans la vision de deux points (l'angle limite) et le pas minimum d'échantillonnage cochléaire.


En ce qui concerne la vision, Helmholtz émit l'hypothèse que la vision séparée de deux points rapprochés n'était possible que si la stimulation lumineuse s'exerçait sur deux récepteurs rétiniens distincts séparés par un troisième récepteur non stimulé. En d'autres termes, l'unité fonctionnelle visuelle ne devait pas comporter moins de trois cellules sensorielles rétiniennes. Cette hypothèse fut confirmée par des données histologiques, psychophysiques et pratiques (reproduction graphique par numérisation).


En ce qui concerne l'audition, à la limite fréquentielle supérieure, le pas minimum d'échantillonnage spatial fait intervenir trois cellules ciliées internes contiguës lors de chaque demi-période, la cellule intermédiaire n'étant pas stimulée. Pour une fréquence plus élevée, l'échantillonnage spatial n'est plus possible.


L'hypothèse d'Helmholtz peut donc s'appliquer aussi à l'oreille interne, et permet de formuler qu'une unité fonctionnelle auditive doit comporter au moins trois cellules sensorielles de Corti.


Il convient toutefois de préciser que cet échantillonnage ne concerne que le système cilié interne (analyse fréquentielle) et qu'il n'est efficient que si le système neural associé à chaque capteur est susceptible de transmettre l'information (au moins une fibre en regard de chaque cellule lors de chaque cycle). Plus précisément, du fait de la période réfractaire des fibres nerveuses, cette condition sous-entend l'intervention d'un nombre suffisant de fibres pour que puisse s'exercer une rotation fonctionnelle par multiplexage.(fig. 30).









Fig. 30. L'unité anatomo-fonctionnelle cochléaire.


A la fréquence maximum audible, le codage par échantillonnage spatial à partir de deux cellules ciliées internes contiguës est impossible (théorème de Shannon). Il le devient par contre à partir de trois cellules adjacentes, à la condition que la transmission nerveuse associée à chaque capteur soit efficiente. L'unité anatomo-fonctionnelle correspond au plus petit pas d'échantillonnage spatial.



3. 7. L'oreille interne est un lecteur code-barre des formes acoustiques membranaires



L'information fournie par la configuration des CCI qui se trouvent stimulées par les ondes propagées est comparable à celle que fournirait un système de lecture code-barre comme cela a été adopté en informatique commerciale. Le problème posé est celui de la lecture d'images, de formes, de répartition de barres, et de sa traduction en un langage binaire.


Un code-barre est formé par une suite de modules de largeur constante, qui peuvent être de couleur claire (0) ou foncée (1)(fig. 31 a). La combinaison de ces modules de base forme des barres claires ou foncées de largeur variable qui symbolisent un message écrit en langage binaire composé de 0 et de 1. La zone du pourtour, claire, est appelée zone de silence. Le décodage de la configuration est réalisé par un système de lecture optique qui traduit les variations d'intensité d'un faisceau lumineux réfléchi en signaux électriques (par exemple, soit par balayage d'un faisceau laser, ou par une série de faisceaux de laser contigus)(b).


Le fonctionnement de l'oreille interne est étonnement comparable à celui d'un lecteur code-barre des formes membranaires. On peut considérer en effet que chaque cellule ciliée interne correspond à un module de ce système, et que chaque cellule peut basculer entre deux états, un état de repos (0), ou un état de dépolarisation (1). La lecture de la configuration acoustique membranaire, des formes membranaires (patterns), est réalisée grâce au déplacement relatif des cellules ciliées par rapport à la membrane tectoria, déplacement qui correspond à celui du faisceau lumineux dans le décryptage traditionnel (c). Selon la position de la cellule ciliée par rapport à une onde membranaire, la flexion des cils s'effectue dans un sens ou dans un sens opposé, entraînant ou non sa dépolarisation (état 0 ou 1). Il en résulte un codage binaire des formes acoustiques membranaires, codage lui même transmis également sous forme binaire par les fibres nerveuses auditives (d).


(°) La systématisation neuro-anatomique montre que les systèmes ciliés externe et interne sont Indépendants.

La disposition des CCI en une seule rangée fait que le système cilié interne est nécessairement soumis à un balayage linéaire.

Par contre, le système cilié externe est soumis à un balayage du type trame, bidimensionnel. Chaque élément de la mosaïque de ce système ne participe que partiellement au champ du balayage; c'est la sommation des réponses de l'ensemble des mosaïques rattachées à un même neurone afférent qui rend le signal de sortie proportionnel à la surface couverte par la forme à identifier. Ce mécanisme est comparable à celui d'un panneau photovoltaïque constitué d'un grand nombre de cellules photosensibles et reliées en série. On conçoit que le système cilié externe est particulièrement bien adapté à l'information de niveau sonore.


(°°) Un processus de balayage existe même s'il n'y a pas de balayage réel par un organe physique. La reconnaissance des formes par une machine (marchandises, tri postal) se fait le plus souvent par balayage linéaire au moyen d'un élément photosensible délivrant à chaque instant une tension de sortie qui est fonction de la quantité de lumière reçue. C'est l'objet (une lettre par exemple) qui se déplace dans la machine sous un rayon lumineux fixe.










Fig. 31. L'oreille interne est assimilable à un lecteur code-barre des patterns membranaires.









II. ECHANTILLONNAGE COCHLEAIRE ET PSYCHOACOUSTIQUE




Le concept de l'échantillonnage cochléaire permet de relier la plupart des données concernant l'anatomie fonctionnelle, données objectives, a celles de la psychoacoustique, essentiellement subjectives. Quelques unes de ces données doivent être soulignées:





1. Echantillonnage cochléaire et champ auditif fréquentiel



Les rampes vestibulaire et tympanique de la cochlée sont assimilables à un seul tuyau sonore ouvert replié en deux parties au niveau l'hélicotréma. Le liquide périlymphatique contenu dans ce tube est le siège d'ondes de pression responsables des mouvements de la MB (Fig. 32 a). Schématiquement, on peut comparer la MB à la corde d'un fouet dont l'extrémité distale resterait libre de mouvement en regard de l'hélicotréma.


Comme le spécifie la théorie de l'échantillonnage cochléaire, l'onde propagée observée expérimentalement en réponse à des signaux transitoires est plus ou moins vite amortie en fonction des paramètres physiques du signal.


Par contre, pour des signaux sinusoïdaux (sons purs), les ondes propagées atteignent toutes l'apex (fig. 32 b). Leur échantillonnage n'est cependant possible que dans bande fréquentielle présentant:


- d'une part une limite fréquentielle inférieure dépendante de la longueur de la MB (avec L = 1 + ½ cycle),

- d'autre part une limite fréquentielle supérieure dépendante essentiellement de deux facteurs:

= la rigidité de la MB dont l'accroissement absorbe les vibrations les moins énergétiques,

= le diamètre des capteurs (CCI) qui détermine le pas d'échantillonnage: l'analyse d'oscillations plus étroites n'est plus possible.






Fig. 32. Schéma simplifié des états de la membrane basilaire:


- a: au repos

- b: soumise à un signal entretenu

- c: soumise à un signal transitoire




2. La limite fréquentielle inférieure du champ auditif




L'expérimentation sur modèle mécanique cochléaire montre que, lorsqu'on diminue la fréquence d'un signal sinusoïdal d'entrée, l'étalement de chacune des oscillations (ondes) de la membrane s'accroit.


En référence à la théorie de l'échantillonnage cochléaire, on en déduit que simultanément les CCI de l'OI sont stimulées par groupes de en plus larges (fig. 33). Lorsque la limite fréquentielle inférieure est atteinte, le pas de l'échantillonnage spatial est maximum et le pattern est alors composé de trois demi-longueurs d'onde. En deçà, l'échantillonnage n'est plus possible. La réponse vibratoire membranaire est comparable à celle d'une vibration sonore produite dans un tube dit ouvert ( ° ). Dans cette situation limite, il n'existe plus qu'un seul nœud qui se situe à l'extrémité fermée du tube, et en ce qui concerne la cochlée, à la base de celle ci. D'une façon imagée, les oscillations de la MB sont assez comparables à celles d'une corde ou d'un fouet.


En définitive,


- le pattern neurosensoriel reste identique quelle que soit la phase du signal,


- mais d'un cycle à un autre, on note un glissement de ce pattern,

- dans chaque cycle, il n'existe qu'une seule et unique bande de stimulation. Sans la présence d'un troisième demi-cycle de longueur d'onde, en accord avec la théorie, un échantillonnage spatial ne pourrait avoir lieu.


- lorsque le premier demi-cycle correspond à une phase de réfaction avec dépolarisation cellulaire, les spikes du nerf apparaissent plus tôt que dans la phase de compression de ce même demi-cycle. (Ce mécanisme de réfaction est utilisé en électrophysiologie auditive depuis des années).


- à la limite fréquentielle la plus basse, la longueur d'onde obtenue par le calcul concorde avec les données de l'anatomie. En effet, en admettant que la vitesse d'une onde propagée sur la MB est d'environ 0,5 m/s (données de Pimonow) et que la fréquence audible la plus basse est de 20 Hz, on trouve par le calcul que la longueur d'onde correspondant à la limite fréquentielle inférieure d'audibilité est de



 V 0,5 m/s 
λ =------=------------# 23,3 mm
 N 20 c/s 

Or cette valeur correspond sensiblement aux 2/3 de la longueur de la MB (valeur moyenne de 35 mm), ce qui confirme que l'échantillonnage spatial est bien effectif à partir d'une longueur et demi d'onde.


( °) tube ouvert à l'une de ses extrémités et fermé à l'autre. A l'extrémité fermée se trouve un nœud, et à l'extrémité ouverte un ventre






Fig. 33. La fréquence limite inférieure du champ auditif.


Lorsque la fréquence du signal acoustique (un son pur) décroît, les ondes réparties sur la MB sont de moins en moins nombreuses et de plus en plus étendues. Le pattern cellulaire dessine des bandes de plus en plus larges. A la limite inférieure de l'échelle fréquentielle, il y a seulement trois demi-cycles, ce qui permet à partir de la longueur totale de la MB de déterminer par le calcul la longueur d'onde correspondante.




3. La fréquence limite supérieure d'audibilité


En application de la théorie de l'échantillonnage cochléaire, la fréquence supérieure limite du champ auditif dépend de deux paramètres:


- d'une part, d'un échantillonnage spatial des cellules supportées par la MB et déterminé par le plus petit intervalle ou pas d'échantillonnage. Cet intervalle correspond à l'espace compris entre trois CCI consécutives, ou deux CCI travaillant en phase;


- d'autre part d'un échantillonnage temporel déterminé par la période réfractaire des fibres nerveuses (1 ms). Les dépolarisations ne peuvent théoriquement dépasser 1000 Hz pour chacune d'elles. Par un mécanisme de multiplexage, la dépolarisation par rotation des 16 à 18 fibres connectées à chaque capteur est suffisante pour transmettre une information de 16 à 18 KHz.


Il s'en suit que (fig. 34):


- au cours d'un cycle vibratoire, deux cellules adjacentes sont stimulées alternativement (chacune des cellules étant associée à l'une des deux phases)


- la configuration de deux cellules les plus proches et stimulées simultanément montre qu'elles sont séparées par une cellule non active en cours de repolaristion. Ce groupe cellulaire minimum peut être appelé unité anatomo-physiologique fréquentielle, ou unité cochléaire fonctionnelle.


- comme l'espace occupé par trois cellules consécutives correspond à la longueur d'onde minimale, on peut déterminer par le calcul la fréquence limite supérieure de l'oreille normale. Il suffit de connaître par ailleurs la vitesse déplacement d'une onde à la surface de la MB. ( ° ). Compte-tenu que chaque cellule occupe un espace moyen de 9 et trois cellules 27 , et en admettant (PIMONOW L.)[50]( que la vitesse de l'onde propagée est d'environ 0,5 m/s,


 V 0,5 
N sup =------=------------# 18 000 Hz
 λ 27.10-6 


Ce résultat est en parfaite concordance avec les données de la psychoacoustique.


Il faut noter de plus que le pattern de stimulation des CCI n'est pas modifié par un changement de phase, et que l'information de la hauteur reste exactement la même. Il y a seulement un glissement du pattern d'une demi longueur d'onde. Cette donnée fournit une explication au constat de la psychoacoustique par lequel le changement de phase d'un son pur ne modifie pas la sensation de hauteur.


La fréquence supérieure audible est aussi sous la dépendance de l'échantillonnage temporel, lequel dépend lui-même du nombre de fibres auditives en connexion avec chaque CCI. Il va sans dire que plus le nombre de fibres sera élevé, plus le multiplexage sera performant sur le plan fréquentiel. On comprend mieux pourquoi, avec un éventail de CCI approximativement le même chez l'homme et le chat, le doublement du nombre de fibres afférentes du chat (environ 60 000) est associé à un doublement de la fréquence maximale (environ 35 000 Hz).


( ° ) On peut retenir qu'il s'agit de la vitesse de propagation d'une onde membranaire résultant d'un transitoire acoustique idéal de Dirac.





Fig. 34. La limite supérieure des fréquences audibles.


Cette fréquence limite supérieure d'audibilité est déterminée par le plus petit pas anatomo-fonctionnel de l'échantillonnage effectué dans l'OI, c'est à dire par l'espace occupé par trois cellules sensorielles contiguës: on notera qu'à chaque demi-longueur d'onde correspond une seule cellule, et que chaque longueur d'onde met en jeu deux cellules adjacentes. Cette fréquence limite supérieure dépend également de l'échantillonnage temporel inhérent à la période réfractaire des fibres nerveuses.




4. Le seuil auditif au bruit blanc : nouvelle approche.



On peut définir un bruit aléatoire, tel qu'un bruit blanc, comme un son dont les amplitudes instantanées sont réparties en fonction du temps selon une courbe de distribution normale (gaussienne)(fig. 35 a). Un tel signal acoustique aléatoire est à l'origine de vibrations aléatoires sur la membrane basilaire de la cochlée.


Lorsqu'on perçoit un bruit blanc, on note deux caractéristiques intéressantes:

= tout d'abord que sa hauteur est constante (le pitch) quelque soit le niveau sonore,

= deuxièmement, que l'acuité de l'oreille à ce type de stimulus est extrêmement fine, au dB près si on mesure le seuil auditif.


Ces caractéristiques sont d'interprétation difficile si on se réfère aux théories actuelles de l'audition. Par contre, elles reçoivent une explication cohérente si on a recours à la théorie de l'échantillonnage cochléaire.




Fig. 35. Le seuil auditif au bruit blanc.


a. La distribution d'amplitude d'un bruit blanc,

b. Le seuil auditif au bruit blanc nécessite un niveau d'énergie minimum

A : pour un sujet normo-entendant,

B : pour un sujet malentendant.


On notera qu'au voisinage du seuil, la tonalité du bruit blanc devrait être proche de celle d'une bande de fréquence centrée autour de 1000 Hz si l'oreille effectuait une décomposition fréquentielle.


1. Lorsqu'on soumet l'oreille à un bruit blanc (ou à un bruit rose), la tonalité de ce son complexe ne change pas si on diminue son niveau sonore. Il est facile de constater que la sensation de hauteur reste identique lorsqu'on atteint le seuil d'audibilité [20]. Pourtant, puisque le seuil d'audibilité à des sons purs situés aux deux extrémités du champ fréquentiel nécessite plus de pression sonore que pour ceux de la partie médiane autour de 1000 – 2000 Hz, et que d'autre part un bruit blanc est un son dont le spectre est continu et régulier en fonction de la fréquence, l'oreille devrait percevoir en cas d'analyse de Fourier une variation de la hauteur en diminuant son niveau. Bref, la tonalité au seuil devrait devenir celle d'une bande de fréquence centrée autour de 1000 –2000 Hz (fig. 35 b).


Ces données d'apparence paradoxales trouvent une explication si on considère que ce signal aléatoire, quelque soit son niveau, entraîne une stimulation aléatoire du système neurosensoriel interne, à la fois dans le domaine spatial et le domaine temporel. En effet, la largeur aléatoire du pas d'échantillonnage est responsable d'un pattern membranaire également aléatoire du signal acoustique. Il s'en suit une dépolarisation anarchique des fibres nerveuses auditives, et une impossibilité d'une quelconque reconnaissance centrale de la hauteur.


2. En ce qui concerne le seuil auditif au bruit blanc, on doit considérer que le système cilié externe est soumis à une stimulation aléatoire temporo-spatiale: aucun point de la MB ne présente de patterns stables et les décharges neurales sont aléatoires dans le temps. Comme chaque cellule est en connexion avec plusieurs cellules d'une même rangée, et avec celles des autres rangées, le rythme de décharge des fibres correspond à une sommation des dépolarisations dont la valeur oscille nécessairement autour d'une valeur moyenne. Avec l'augmentation du niveau du signal acoustique, l'amplitude du déplacement de la MB et la densité des cellules stimulées s'accroissent, ainsi que la densité (moyenne) des spikes sur l'éventail neural. Cette valeur moyenne constante pour chaque niveau sonore explique les données par lesquelles le seuil auditif au bruit blanc est particulièrement précis, à 1 dB près, alors que le signal acoustique fluctue largement autour d'un niveau moyen.[18, 19].




5. 1 000 Hz: la fréquence pivot.



La fréquence 1 000 Hz est une fréquence singulière. Si chaque CCI n'était connectée qu'à un seul neurone auditif, le codage de l'information ne pourrait pas dépasser 1 000 Hz compte- tenu de la période réfractaire de la fibre nerveuse. A partir de 1 000 Hz, en référence au théorème de Shannon et toujours du fait de cette période réfractaire, le codage impose la participation d'au moins deux fibres, donc d'au moins deux cellules ciliées lors de chaque cycle. Au delà de 1 000 Hz, le codage implique un nombre encore plus élevé de fibres nerveuses.


Au dessous de cette fréquence, le codage n'est pas limité par la fenêtre temporelle de la fibre nerveuse et le pattern membranaire est aisément détectable tout le long de la MB par chaque fibre coup par coup. Ce codage est spatial, de type sensitif (comme pour la peau).


A partir de 1 000 Hz, la fibre nerveuse ne peut plus répondre au coup par coup à toutes les vibrations. Le codage n'est possible que par l'intervention d'un mécanisme de multiplexage dans des groupes de fibres. Le codage devient spatio-temporel, à la fois de type sensitif et sensoriel.


1 000 Hz est donc une fréquence pivot, à partir de laquelle bascule le type de codage.


Au dessous de 1 000 Hz, deux mécanismes de codage peuvent donc coexister, l'un par échantillonnage spatial sur la MB, l'autre par réponse au coup par coup sur une même fibre. La reconnaissance de l'un ou l'autre suppose donc chez le sujet normo-entendant un apprentissage spontané préalable. Au dessus, seul subsiste le codage spatial.


On entrevoit dès lors pourquoi, chez le sourd profond dont le reliquat auditif est limité aux fréquences les plus basses du champ auditif, le seuil auditif est d'obtention souvent si difficile puisqu'il ne peut pas définir précisément si la perception est celle d'un son avec tous ses attributs ou celle d'une sensation de type tactile sans véritable perception sonore. Seule la répétition des tests, par un véritable apprentissage, permet d'affiner les seuils. On s'explique mieux aussi (en dehors des difficultés liées à l'étroitesse de la bande passante et à l'exclusion d'éléments informatifs essentiels de la parole) le peu d'efficience de la prothèse auditive amplificatrice sans rééducation chez ces mêmes sourds profonds: réponse de type tactile ou sensorielle?



6. La phase et le timbre d'un son complexe.



On démontre qu'un son complexe est déterminé par le nombre, la fréquence, l'amplitude et la phase des sons purs composant ce signal. Le pattern de cette onde complexe change si on modifie l'un des paramètres des composants, ce qui devrait logiquement retentir sur la qualité du son perçu.


Il devrait en être ainsi en agissant sur les rapports de phase entre les composants du son complexe. Or, dans la réalité, la phase n'intervient pas dans la perception de la hauteur.


A titre d'exemple, le tracé de deux sons complexes résultant de la modulation d'amplitude d'un son pur de 1 000Hz par un autre son pur de 200 Hz est différent si les deux stimuli sont en phase ou en opposition de phase (180°) (le deuxième son complexe est une version opposée du premier). Malgré la différence de leurs tracés, on ne note pas de différence de hauteur en écoutant l'un ou l'autre de ces sons.


Aussi, bien que physiquement différents, on est en droit de conclure que la perception subjective identique de ces deux sons implique une identité d'analyse cochléaire. Si l'oreille effectuait une décomposition fréquentielle, on devrait percevoir une différence de hauteur. Par contre, le principe d'un échantillonnage des formes cochléaires permet d'interpréter cette perception auditive apparemment paradoxale: pour les deux signaux la configuration du codage est identique. On note seulement un glissement de la configuration des capteurs sollicités, ce qui ne modifie en rien l'information transmise par les voies neurales (fig. 36).





Fig. 36. Le changement de phase du signal acoustique ne modifie pas le pattern sensoriel obtenu par échantillonnage au niveau du système cilié interne. L'oreille est insensible à la phase d'un son pur.



7. L'énigme du fondamental absent.



Si on réalise un son complexe périodique par addition de sons purs de 700, 800, 900 et 1000 Hz, la plupart des sujets perçoivent un son de 100 Hz (la fréquence fondamentale). Inverse- ment, si on soustrait au moyen de filtres acoustiques la fréquence fondamentale de ce son complexe périodique, l'oreille continue de percevoir cette fréquence comme si elle était encore physiquement présente.


Cet étrange phénomène de psychoacoustique pose le problème dit du "fondamental absent".


Les théories de la localisation tonale cochléaire ne peuvent expliquer ce qui est resté une énigme. On a suggéré qu'il pouvait s'agir d'un processus non linéaire entre les vibrations tympaniques et la stimulation des neurones du nerf auditif. D'autres études ont émis l'hypothèse que le cerveau pouvait effectuer une analyse de Fourier.


La théorie de l'échantillonnage cochléaire est en mesure par contre d'apporter une explication plausible à ce phénomène en montrant que le pattern neurosensoriel ne change pas si on soustrait le fondamental du son complexe périodique, et que ce pattern est déterminé par l'harmonique le plus élevé. La reconnaissance sonore étant liée à la mémorisation des formes, les centres cérébraux ne peuvent évidemment pas différencier l'information transmise par les voies nerveuses puisque le résultat de l'échantillonnage est exactement le même (fig. 37).





Fig. 37. Le phénomène du fondamental absent.


Le pattern neuro-sensoriel ne change pas si on soustrait la fréquence fondamentale d'un son complexe périodique.



8. La couleur tonale des transitoires.



La sensation auditive d'un transitoire varie considérablement d'un signal à un autre. Théoriquement, comme la durée d'un transitoire est inférieure à celle de la constante de temps d'oreille (de 10 à 60 ms), ce type de signal acoustique ne devrait pas être affecté d'une tonalité. Pourtant, des tone-bursts (de durée pouvant varier de 5 à 20 ms) ont malgré tout une coloration tonale. Il en est de même pour des clics qui apparaissent plus ou moins "secs", mais encore "colorés". Même des transitoires ne comportant qu'une seule oscillation sinusoïdale, et de niveaux identiques, engendrent encore une sensation tonale qui diffère de l'un à l'autre.


De tous les paramètres possibles, le contenu fréquentiel d'un transitoire n'intervient certainement pas à lui seul dans la perception psychoacoustique. L'enveloppe du signal, et plus particulièrement les temps d'installation et de disparition, sont très importants. Un transitoire très bref sonne comme un claquement. Inversement, pour des temps de montée et de disparition soigneusement choisis, le transitoire d'attaque et de disparition peut ne plus être perçu (par exemple les MESP ou messages élémentaires de sons purs décrits par Korn T.S. et Bosquet J.)[38, 39, 4]. Ces données expliquent pourquoi les musiciens accordent tant d'importance à l'attaque et l'extinction d'une note. [73]


D'une manière générale, plus la pente de l'enveloppe du signal s'élève, plus le signal se rapproche d'un échelon de Dirac, et plus le spectre de fréquence s'élargit. La forme du signal importe autant, sinon plus, que son contenu.


Les expériences sur modèles mécaniques cochléaires montrent qu'un transitoire génère une onde propagée pseudo-sinusoïdale. En fonction de son énergie et de sa pente d'installation, l'onde se propage plus ou moins loin et est le siège d'oscillations plus ou moins nombreuses et plus ou moins serrées. Comme le seraient des ondes sinusoïdales pures, ces ondes sont également soumises à un échantillonnage spatial, ce qui rend compte de la sensation paradoxale de hauteur des transitoires. En effet, plus le transitoire est bref, plus le pas d'échantillonnage est étroit, plus la coloration tonale sera aiguë (fig. 38).


On notera que l'échantillonnage n'intéresse pas la totalité de la cochlée mais qu'il est nécessairement limité à sa portion basale, voire moyenne. Ceci ne conforte pas pour autant les théories de la tonotopie, car plus le signal est bref, plus son spectre de fréquence s'élargit, et devrait dès lors intéresser une zone beaucoup plus étendue de la cochlée s'il existait une décomposition fréquentielle.






Fig.38. Le pattern neuro-sensoriel des transitoires.



La tonalité d'un transitoire acoustique peut être expliquée par l'échantillonnage de l'onde propagée pseudo-sinusoïdale sur la MB. Le pas de cet échantillonnage est sensiblement identique à celui d'une onde sinusoïdale.




9. La sensation tonale de clics répétés.



La sensation auditive provoquée par la répétition de transitoires varie avec la cadence de ces derniers. Lorsqu'ils sont très espacés, l'oreille perçoit des claquements isolés, plus ou moins secs, selon leur durée et leur forme (attaque et extinction).


Avec l'augmentation de la cadence, l'oreille continue de percevoir des clics de plus en plus rapprochés, mais encore distincts les uns des autres. La sensation devient ensuite imprécise, et les impulsions composant ce stimulus acoustique ne peuvent plus être distingués séparément. La sensation devient progressivement celle d'un son de tonalité grave au départ, puis de plus en plus aiguë.


A la sensation de claquements nettement espacés fait place suite la sensation bien connue d'une crécelle ou de la roue dentée de Savart, puis approximativement celle d'un son pur.


On attribue actuellement cette variation de sensation à la variation de périodicité du stimulus, sans bien en préciser le mécanisme. Cette interprétation n'explique évidemment pas pourquoi il apparaît une sensation tonale alors que les transitoires ont un spectre de fréquence très étendu.


Par contre, si on retient les concepts de l'échantillonnage cochléaire, il suffit de considérer la réponse mécanique de la membrane basilaire en fonction de la cadence des impulsions pour trouver une explication à cet étrange phénomène de psychoacoustique.


Pour un signal transitoire isolé, la membrane réagit par un phénomène oscillatoire, l'onde propagée, qui parcourt celle-ci de sa partie fixe basale à son extrémité libre apicale (fig. 39).


Le phénomène reste identique pour des transitoires répétitifs et suffisamment espacés dans le temps: en effet l'onde propagée a disparu lorsque survient l'impulsion suivante. Mais si la cadence augmente encore, il arrive un moment où la seconde impulsion se produit alors que la première n'a pas terminé sa course le long de la membrane basilaire. Puis les ondes sont de plus en plus rapprochées jusqu'à une limite supérieure où elles deviennent contiguës.


L'échantillonnage spatial de ces différentes réponses membranaires se traduit évidemment par des sensations auditives variées:

- si l'impulsion membranaire est isolée, la sensation sera celle d'un clic avec coloration tonale dépendante du nombre d'oscillations contenues dans cette impulsion et du pas d'échantillon nage cochléaire (la forme de l'impulsion dépendant de la pente du signal et de son énergie);

- si deux ou plusieurs impulsions persistent simultanément, sur la membrane, un échantillon nage spatial devient alors possible avec perception d'une sensation tonale, grave pour le pas le plus large, de plus en plus aiguë lorsque le pas diminue.


Cette interprétation est en accord avec les données de la psychoacoustique concernant la périodicité. En effet, comme pour les sons purs, la périodicité la plus grande (de l'ordre de 50 à 60 ms) correspond au pas le plus large, et permet de retrouver la limite inférieure tonale (20 Hz) (fig. 39).


Par contre, la périodicité la plus faible, qui correspond au pouvoir séparateur de l'oreille (1,14 ms)[41], et au dessous de laquelle il se produit une sensation de fusion sonore, ne permet pas de définir la limite fréquentielle supérieure du champ auditif. Cette valeur correspond en effet à la limite des possibilités temporelles de la fibre nerveuse (période réfractaire), bien que les impulsions mécaniques ne soient pas encore fusionnées au niveau de la membrane basilaire. Cette situation est exactement superposable à celle observée lors de l'excitation de la cochlée par un train d'impulsions électriques (implants cochléaires). Dans les deux cas, à la limite "fréquentielle" supérieure (observée aux alentours de 800 coups par seconde) il se produit une dépolarisation quasi simultanée de l'ensemble des fibres pour chaque impulsion.





Fig. 39. Analyse cochléaire impulsionnelle. Psychoacoustique de clics répétitifs.



En réponse à un transitoire unique, la sensation psychoacoustique est celle d'un clic affecté d'une couleur tonale qui dépend du nombre d'oscillations contenues dans le déplacement membranaire et du pas d' échantillonnage neurosensoriel.


Si on considère une série de clics, un échantillonnage spatial cochléaire devient possible. La sensation de clics distincts les uns des autres fait place à une sensation de hauteur qui dépend de la périodicité. On note alors que la hauteur est celle d'un son grave pour le pas d'échantillonnage le plus large (périodicité allant de 50 à 60 ms correspondant à 20 Hz), et qu'elle s'élève lorsque le pas d'échantillonnage décroît. Cependant pour la périodicité la plus courte (1,14 ms environ), on observe une fusion tonale en raison de la période réfractaire de la fibre nerveuse (même problème que pour la stimulation électrique de la fibre par implant cochléaire)






III. ECHANTILLONNAGE COCHLEAIRE ET PHYSIOPATHOLOGIE AUDITIVE







1. Théorie de l'échantillonnage cochléaire et perte auditive.



A l'exception des surdités d'origine centrale, et d'étiologie extrêmement variable, on peut rapporter les déficit auditifs du type de perception à trois groupes de lésions périphériques: par atteinte sensorielle pure, par atteinte isolée des neurones auditifs, ou enfin par atteinte neuro-sensorielle périphérique mixte, cette dernière étant de loin la plus fréquente, l'atteinte sensorielle étant habituellement suivie d'une dégénérescence secondaire des neurones auditifs.


La localisation des lésions est variable: soit dispersée, soit le plus souvent localisée à la base de la cochlée.


Quoiqu'il en soit, ces pertes auditives neurosensorielles résultent d'un élargissement du pas d'échantillonnage, soit spatial par atteinte des cellules de Corti, soit temporel par atteinte des neurones, soit conjugué spatio-temporel.



1. Troubles de la perception d'un son complexe périodique.


Considérons un son complexe périodique composé d'un fondamental F0, et de ses harmoniques F1, F2 et F3, F3 étant situé à la limite supérieure de l'échantillonnage (fig. 40). Si le peigne d'échantillonnage formé par la rangée de CCI est complet, (ce qui sous-entend que l'échantillonnage est réalisé à partir d'un nombre de capteurs double de la fréquence, soit F3 x 2), toutes les fréquences F0, F1, F2 et F3 seront détectées. Inversement, si le peigne d'échantillonnage est partiellement détruit par une raréfaction aléatoire des capteurs, le pas d'échantillonnage est élargi et F3 ne peut plus être détectée. Plus le pas s'élargit, qu'il soit spatial ou temporel, c'est à dire sensoriel ou neural, plus l'amputation des fréquences élevées est importante (exemple de la presbyacousie, ou des lésions cochléaires par ototoxicité).

(fig. 40)


Fig. 40. Echantillonnage d'un son complexe périodique.


Lorsque le nombre des capteurs (CCI) diminue, le pas d'échantillonnage s'élargit et la fréquence limite supérieure décroît. Le son complexe s'appauvrit en perdant ses harmoniques les plus élevés.




2. Troubles de la perception d'un transitoire


L'environnement sonore est infiniment plus chargé de transitoires que de sons purs entretenus.

Sur le plan physique, un signal est dit transitoire si sa durée est inférieure à la constante de temps de l'oreille. Cette durée ne permet pas l'installation d'un régime permanent, entretenu. Par extension, toute variation d'un son, aussi bien de niveau que de hauteur, pourvu qu'elle soit suffisamment rapide, constitue une fonction transitoire.


Les transitoires jouent un rôle primordial dans la communication: ils transportent le maximum de l'information sémantique de la parole.


Au niveau de la membrane basilaire, un transitoire est à l'origine de vibrations forcées se présentant sous la forme d'une onde propagée composée d'oscillations pseudo sinusoïdales qui s'amortissent plus ou moins rapidement selon l'impédance de chaque oreille. Comme pour des oscillations sinusoïdales par son pur, ces oscillations pseudo sinusoïdales sont soumises à un processus d'échantillonnage par les cellules ciliées: plus ces dernières (capteurs) sont resserrées, plus l'échantillonnage est précis.


Si le pas d'échantillonnage est élargi par disparition de cellules ciliées (le peigne est plus grossier), un certain nombre des oscillations contenues dans l'onde propagée ne peuvent être détectées. L'échantillonnage résultant est alors identique à celui qui serait obtenu à partir d'une oscillation pseudo-sinusoïdale correctement échantillonnée et qui comporterait un nombre d'oscillations détectées équivalent (fig. 41).


Cette distorsion dans l'analyse des formes membranaires explique pourquoi, malgré des lésions neurosensorielles diffuses, un malentendant peut encore percevoir un transitoire. Ce dernier est codé comme s'il était plus amorti qu'il ne l'est en réalité. (à rapprocher du processus de repliement).


Cette même distorsion d'analyse des transitoires rend compte aussi des modifications subjectives de perception des transitoires, comme s'ils avaient subi une altération sonore. Elle apporte encore une explication quant à la difficulté de reconnaissance des composants les plus brefs de la parole tels que les consonnes plosives, et son retentissement sur l'intelligibilité de la parole.







Fig. 41. Echantillonnage d'un transitoire (onde pseudo-sinusoïdale).


L'élargissement du pas d'échantillonnage modifie, à la réception, les paramètres du transitoire échantillonné : diminution d'amplitude, disparition d'ondes, augmentation de la longueur d'onde. Il en résulte, sur le plan acoustique, une sensation de diminution de niveau, un décalage de la couleur tonale vers les sons graves (repliement). (Pour rendre la figure plus explicite, on a supposé que l'échantillonnage était réalisé au moyen du peigne n° 4).



2. Surdités de perception et échantillonnage cochléaire.



L'otologiste rencontre en pratique quotidienne trois formes de surdités de perception d'origine cochléaire:


- d'une part la surdité de perception proprement dite, caractérisée par une élévation du seuil auditif pour l'ensemble des fréquences du champ auditif;


- d'autre part la surdité par distorsion auditive, avec courbe audiométrique tonale peu ou pas modifiée, voire normale, mais avec troubles de l'intelligibilité du langage (le score maximum d'intelligibilité est diminué) "j"entends mais je ne comprend pas";


- enfin la surdité de perception "composée" (pour ne pas dire "mixte") associant une élévation des seuils tonals à une distorsion auditive avec troubles de la reconnaissance des phénomènes transitoires, en particulier de la parole.


Du point de vue anatomo-pathologique, les lésions neurosensorielles peuvent être également classées en trois catégories:

- une disparition éparse, aléatoire, des cellules ciliées, tant internes qu'externes et du système neural afférent;

- une raréfaction très importante voire une disparition complète du système neuro-sensoriel cochléaire en une zone bien localisée, le plus souvent basale. Au delà l'éventail est bien conservé;

- enfin l'association des deux types de lésions précédentes comportant à la fois une ou des zones de destructions totale et des lésions éparses sur le reste de la membrane basilaire.


On ne retrouve habituellement pas de correspondance franche entre la localisation des lésions et la perte auditive tonale théorique dans l'hypothèse d'une tonotopie. Par contre, les données cliniques et histopathologiques sont aisément reliées entre elles par le concept de l'échantillonnage cochléaire. On peut alors retenir trois groupes de surdité:


Groupe 1: caractérisé par une raréfaction aléatoire des éléments neurosensoriels, elle-même responsable d'un élargissement du peigne d'échantillonnage. Il s'en suit un abaissement de la limite fréquentielle supérieure d'audibilité avec courbe tonale plongeante vers les aigus, une difficulté de reconnaissance uniquement des transitoires les plus brefs. L'intelligibilité est donc peu perturbée.


Groupe 2: caractérisé par une zone basale histologiquement muette, désertique, avec conservation de l'éventail neuro-sensoriel au delà. L'échantillonnage n'est donc plus possible à la base alors qu'il reste normal ailleurs. L'échantillonnage de la fréquence limite supérieure restant possible, la courbe audiométrique tonale est normale. La détection des transitoires est par contre impossible, sauf pour les transitoires les plus énergétiques dont les oscillations les plus éloignées atteignent la zone indemne. Les phénomènes transitoires de la parole ne sont donc que partiellement détectés, ce qui entraîne d'importants troubles de l'intelligibilité avec une courbe audiométrique vocale d'allure très écrasée.


Groupe 3: ou "mixte" comportant l'association d'une zone histologiquement muette basale et d'une raréfaction des capteurs des zones mésiales et apicales. Cette association est responsable d'une absence d'échantillonnage à la base et de détection des transitoires, et d'un élargissement du peigne d'échantillonnage ailleurs avec abaissement de la limite fréquentielle supérieure d'audibilité. Les courbes audiométries tonales et vocales sont l'une et l'autre altérées.


En bref, la répartition spatiale des lésions neuro-sensorielles conditionne le type et le degré de déficience auditive (fig. 42)





Fig. 42.. Corrélation entre anatomopathologie et audiométrie des surdités neuro-sensorielles

cochléaires.


En haut: les surdités caractérisées par des troubles de l'intelligibilité sans atteinte appréciable de la sélectivité fréquentielle s'expliquent par une difficulté d'échantillonnage des transitoires à la base de la cochlée alors que l'échantillonnage des sons purs n'est pas perturbé au delà. L'environnement sonore étant essentiellement composé de bruits transitoires, de multiples contraintes mécaniques sont imprimées à la partie basale de la cochlée. Il en résulte chez la plupart des individus une destruction privilégiée des cellules sensorielles de cette zone.


En bas: les différentes formes de surdité neurosensorielles dépendent de la localisation des lésions cochléaires. Une atteinte dispersée des CCI entraîne une perte de sélectivité commençant par les fréquences les plus élevées. Une destruction des cellules ciliées internes de la base de la MB est responsable d'un abaissement du score maximum d'intelligibilité. On entrevoit dès lors l'existence d'une multitude de variétés d'hypoacousie selon l'importance respective des ces deux formes de lésions sensorielles: par exemple une intelligibilité normale avec une perte de sélectivité des sons les plus élevés, ou encore une diminution de l'intelligibilité alors que la courbe audiométrique tonale est strictement normale, mais encore une grande variété de surdités de degrés intermédiaires.




3. Classification des surdités neurosensorielles. Du type 1 au type 6.



Alors que les théories actuelles de l'audition, au seul vu des tracés audiométriques, ne permettent pas de répertorier les surdités neurosensorielles, le concept de l'échantillonnage cochléaire permet d'établir une classification cohérente de ces déficits auditifs et de relier le pattern audiométrique au type de lésions cochléaires.


Pour cela, il faut considérer :

- d'une part que les différentes formes de lésions de la cochlée (perte de cellules ciliées, atrophie de la strie vasculaire, perte de neurones, modifications des caractéristiques physiques du canal cochléaire) sont à l'origine de déficits fonctionnels spécifiques;

- d'autre part que ces différentes formes de lésions peuvent être associées.


En conséquence, le pattern audiométrique diffère nécessairement en fonction de ces diverses modifications pathologiques, et si plusieurs formes de lésions coexistent, la courbe audiométrique résultante naît de la combinaison des différents tracés propres à chacune d'elles.


Inversement, c'est à partir de ces différents patterns, de courbes audiométriques anormales, que la théorie de l'échantillonnage cochléaire va permettre de les rapporter à un déficit fonctionnel propre à chaque partie en cause du système auditif.


La pratique de l'audiométrie clinique montre que l'on peut réduire à six profils de base les courbes tonales aux sons purs (fig. 43). A chacun d'eux, la théorie de l'échantillonnage permet d'associer six types de déficit auditif neuro-sensoriel :


Type 1: courbe régulièrement décroissante vers les fréquences élevées en rapport avec une atteinte neurosensorielle pure (perte de CCI, presbyacousie, surdité par atteinte ototoxique),


Type 2: courbe en cuvette centrée sur 2 kHz lors de lésions du système neuro-sensoriel externe (caractéristique d'une atteinte des CCE, des surdités héréditaires, des surdités congénitales),


Type 3: courbe horizontale ou courbe légèrement descendante, correspondant à une atteinte striée (hypotension, drogues sclérosantes, hypoxie…)[54],


Type 4: courbe descendante abrupte à partir de 1 kHz (lésions méningitiques),


Type 5: scotome à 4 kHz (traumatisme acoustique, succédant à une réponse vibratoire excessive du résonateur cochléaire),[10]


Type 6: courbe ascendante observée dans les atteintes de transmission endocochléaires (dysplasie osseuse, maladie de Ménière, …)


Tous ces types peuvent se conjuguer pour donner une courbe audiométrique tonale composite.







Fig. 43. Théorie de l'échantillonnage et classification des surdités neurosensorielles







Fig. 44. De nombreuses courbes audiométriques sont en réalité des courbes composites:


En 1: élévation du seuil tonal par atteinte du système neuro-sensoriel externe,

En 2: perte associée des fréquences sonores élevées correspondant à l'atteinte du système neuro-sensoriel interne. Il en résulte une difficulté d'échantillonnage des transitoires les plus brefs et des troubles de l'intelligibilité du langage.

En bas, courbe composite résultante avec un pic apparemment paradoxal sur 4 kHz et pour lequel il n'a jamais été apporté d'explication plausible.




Fig. 44 bis. Evolution des courbes audiométriques en cuvette.


La réfaction progressive des cellules ciliées et des neurones auditifs internes entraîne une difficulté de plus en plus grande d'échantillonnage des fréquences élevées. A l'amputation des sons du médium s'ajoute donc une amputation progressive des sons aigus. Cliniquement, les sujets décrivent une aggravation très rapide de leur audition alors que la perte du médium était jusqu'alors bien compensée.




4. Traumatisme acoustique et scotome auditif.




Chacun sait que l'exposition prolongée à des niveaux de bruit d'intensité moyenne est à l'origine d'une baisse progressive de l'acuité auditive. Mais on sait aussi qu'une seule et unique exposition à un son de niveau très élevé (ou à des bruits de courte durée et répétés) peut également entraîner une perte auditive: on est alors en présence d'un traumatisme acoustique. On admet que l'exposition à un bruit impulsionnel provoque une destruction partielle voire totale du canal cochléaire, que l'on attribue à des déplacements probablement d'amplitude extrêmement élevée de l'onde propagée. Les études effectuées sur oreille humaine montrent que les lésions siègent dans une zone allant approximativement de 5 à 10 mm de la fenêtre ovale [31]. Parallèlement, les audiogrammes révèlent une élévation du seuil d'audibilité au voisinage de 4 kHz. Si l'oreille est soumises à de nouvelles expositions traumatisantes, le scotome auditif à 4 kHz peut progresser et devenir à la fois plus large et plus profond. Il n'en demeure pas moins que les mécanismes pathogéniques du trauma acoustique et de ses conséquences psychoacoustiques sont demeurées assez confuses (fig. 45), un scotome sur 4 kHz ne succédant pas nécessairement à un son traumatisant sur cette fréquence.


Les données de mécanique cochléaire expérimentale et la Théorie de l'échantillonnage cochléaire donnent à penser que deux mécanismes pathogéniques sont systématiquement confondus


- d'une part, la survenue de lésions mécaniques directes siégeant à la partie basale de la membrane basilaire à la suite d'un bruit très bref et de forte intensité. Comme tout transitoire, il déclenche une onde propagée dont l'amplitude des oscillations dépasse les limites mécanique- ment acceptables;


- d'autre part, en réponse à cet impact de forte intensité, la production de vibrations forcées du tube cochléaire, qui se comporte physiquement comme un résonateur, et dont la fréquence de résonance se situe à environ 6 kHz (°). Ces oscillations forcées peuvent elles-mêmes entraîner des lésions des cellules ciliées, visibles ou non à l'examen microscopique, et réparties sur l'ensemble de la membrane basilaire, ce qui entrave l'échantillonnage de la fréquence 6 kHz.


En faisant intervenir ces deux mécanismes, on est en mesure d'expliquer d'une part la quasi constance de lésions siégeant à la base de la cochlée, et d'autre part la présence du scotome auditif autour de 4 kHz. Il n'est pas nécessaire de souscrire à une relation de cause à effet entre le siège des premières et le constat psychoacoustique de l'autre. A l'appui de cette interprétation, il faut souligner que tout transitoire, quelque soit son spectre de fréquence, peut provoquer un déficit auditif à la fréquence de résonance de la cochlée, c'est à dire au voisinage de 6 kHz (on notera qu'on obtient par le calcul la valeur de 5 357 Hz). En effectuant habituellement une recherche des seuils par octave, et en particulier la détermination du seuil à 4 kHz, les cliniciens occultent la fréquence de la mi-octave. Il serait donc judicieux d'effectuer une exploration systématique de cette portion du champ fréquentiel pour un dépistage beaucoup plus précoce des traumatismes sonores [24]. (tableau VI).





En se référant à la loi de Bernouilli, la fréquence de résonance d'un tube semi-ouvert est donnée par la formule :

 C
f =------
 4 L

Si on assimile l'oreille interne à un tube semi-ouvert dont la longueur L totale déroulée (rampe vestibulaire, héliotrope et rampe tympanique) est de 70 mm, et sachant que la vélocité C d'un son se propageant dans l'eau est d'environ 1 500 m/s, on trouve que la fréquence propre de résonance de ce tube est de

f # 5 000 Hz ( 5 357 Hz )

Quelle que soit la fréquence du signal d'entrée, et plus particulièrement pour un transitoire dont le spectre de fréquence est nécessairement très large, la fréquence propre de résonance du système reste toujours la même



Tableau VI






Fig. 45. Modèle pathogénique de l'atteinte auditive par traumatisme sonore.



Les lésions traumatiques procèdent de deux mécanismes qui se conjuguent:

- d'une part un effet destructeur du transitoire à la partie basale de la membrane basilaire,

- d'autre part un mécanisme de résonance forcée de l'ensemble du tube cochléaire à l'origine de lésions éparses sur la membrane basilaire.


D'un point de vue acoustique:


A. le spectre théorique d'un transitoire est continu. (dans la réalité, il s'étale sur une très large bande fréquentielle);


B. mais paradoxalement, la perte auditive ne concerne pas la totalité des fréquences du champ auditif. Au contraire, la perte maximum de sélectivité fréquentielle se situe aux alentours de 4–6 kHz. Elle résulte, en accord avec la théorie de l'échantillonnage cochléaire, de lésions éparses sur la membrane basilaire secondaires à un mécanisme de résonance forcée du tube cochléaire;

Du point de vue de la mécanique cochléaire:

C. le bruit transitoire provoque une onde propagée d'amplitude excessive à l'origine de lésions qui se situent majoritairement à la partie basale de la membrane basilaire; mais il provoque aussi simultanément une résonance du tube cochléaire avec des oscillations forcées de forte amplitude (destructrices) à sa fréquence propre et réparties sur l'ensemble de la membrane basilaire (D).

La localisation basale des lésions de la membrane est responsable de difficultés d'échantillonnage des transitoires, et plus précisément de ceux de la parole. Il en résulte une diminution du score maximum d'intelligibilité dans l'identification des mots.

La répartition diffuse des autres lésions rend compte de l'élévation du seuil au niveau du scotome.


5. Echantillonnage cochléaire et seuil auditif au bruit blanc.


L'expérience montre que l'oreille est très sensible aux variations de niveau d'un bruit blanc. C'est une des raisons pour lesquelles ce signal avait été retenu dans le dépistage des surdités infantiles. Bien que le tracé oscillographique du bruit blanc montre d'importantes variations d'amplitude autour d'un niveau moyen, le seuil auditif est très précis et peut être déterminé à 1 dB près.

Comme nous avons pu le montrer [19], on ne trouve pas de corrélation significative entre le seuil auditif au bruit blanc et la répartition des pertes fréquentielles d'une surdité. Le seuil auditif au bruit blanc est approximativement identique à celui d'un son de 1 kHz, quelque soit l'allure de la courbe audiométrique tonale.

Enfin on ne note pas de modification de la tonalité du bruit blanc voisinage du seuil alors qu'il devrait revêtir une coloration tonale proche de celle d'une bande centrée autour de 1-2kHz. L'observation des réponses membranaires sur des modèles cochléaires montre en fait qu'un bruit blanc engendre des vibrations plus ou moins énergétiques qui se répartissent sur l'ensemble de la membrane. Même si on ajoute un filtre passe-bas ou un filtre passe-haut à ce bruit blanc, il est impossible de retrouver une quelconque tonotopie, contrairement à ce que les théories de la localisation fréquentielle pouvaient le laisser prévoir.

Ces données sont essentielles quant au concept du fonctionnement cochléaire. Les caractères du bruit blanc s'expliquent si on admet que:

- la systématisation neurale dépendant des CCE conduit à une sommation des réponses des CCE aux vibrations aléatoires de la membrane basilaire. Si chaque CCE n'était reliée qu'à une seule fibre, il y aurait de grandes variations d'intensité; le niveau de réponse est en quelque sorte moyenné;

- l'excitation aléatoire des CCI conduit à un échantillonnage spatial dont le pas est lui-même aléatoire. Cet échantillonnage aléatoire entrave tout codage de hauteur.

6. Les difficultés de perception de la parole avec audiogramme tonal normal


De nombreux sujets, dont l'acuité auditive est normale au vu de l'audiogramme tonal, se plaignent néanmoins d'une difficulté de perception de la parole, en particulièrement dans une ambiance sonore bruyante.

Ce dysfonctionnement auditif ne s'accompagne pas d'une élévation du seuil de perception de la parole dans le bruit, et les tests centraux tels que le test de discrimination dichotique ou le test de perception de la parole filtrée sont par ailleurs normaux [25].


On a pensé que cette régression phonémique pouvait être liée chez ces patients à une perte de neurones auditifs. Mais si on a pu établir l'existence d'une corrélation significative entre les troubles de discrimination des mots et la perte de neurones auditifs de la base de la cochlée (zone comprise entre 15 et 22 mm de la base), il n'en a rien été pour les autres régions de la cochlée [54]. En admettant le concept d'une localisation fréquentielle cochléaire, on ne rend donc pas compte de la discordance paradoxale existant entre l'atteinte des cellules ciliées de la base et l'absence de déficit tonal pour les sons aigus.


A l'inverse, la théorie de l'échantillonnage cochléaire est en mesure de relier les données anatomopathologiques et les troubles auditifs présentés par ces sujets. En effet, la localisation des lésions à la base de la cochlée fait que l'échantillonnage spatial (des CCI) est déficient à la base, et qu'il demeure par contre normal au niveau des autres parties de la membrane basilaire. L'échantillonnage pour les fréquences les plus élevées restant possible, la courbe audiométrique tonale ne montre aucune anomalie. Par contre, la détection par échantillonnage des transitoires (qui apparaissent normalement à la base de la cochlée) n'est pas possible, à l'exception des signaux transitoires les plus énergétiques dont les oscillations membranaires propagées peuvent atteindre en s'amortissant les parties intactes de la cochlée (fig. 46).


Comme les signaux acoustiques transitoires transportent la plus grande partie de l'information de la parole, l'absence totale ou partielle d'échantillonnage de ces transitoires est en mesure d'expliquer la diminution du score de reconnaissance des mots.



1 2

Fig. 46. Une perte auditive caractérisée par des troubles de l'intelligibilité sans atteinte fréquentielle sélective significative traduit une difficulté d'échantillonnage des transitoires alors que l'échantillonnage des sons purs reste possible.

En 1: difficulté de détection des transitoires et de l'information sémantique;

En 2: détection tonale par échantillonnage et information esthétique possibles


Notre environnement acoustique est essentiellement composé de transitoires. Ces transitoires, par leur répétition, soumettent la base de la cochlée à d'innombrables contraintes mécaniques responsables des atteintes sensorielles à ce niveau. A noter que les vibrations forcées en rapport avec des transitoires de très fort niveau n'entraînent pas nécessairement une lésion des cellules les plus proches de la base de la cochlée (les oscillations membranaires les plus précoces survenant après délivrance du signal transitoire étant de moindre amplitude), ce que confirment les données histologiques relevées sur la cochlée après traumatisme acoustique.



7. Repliement cochléaire (aliasing).



Le phénomène de repliement (ou aliasing des anglo-saxons) (alias, ou autre ; ex: J-B Poquelin, alias Molière), est la résultante d'un échantillonnage incorrect d'un signal continu, plus précisément lorsque cet échantillonnage est effectué à une cadence insuffisante par rapport à la fréquence du signal (ou de la fréquence de la composante supérieure d'un signal complexe). Les valeurs échantillonnées sont alors représentatives de fréquences plus basses que la fréquence échantillonnée, bien qu'elles n'existent pas à l'origine.

L'analyse d'une grandeur continue par échantillonnage peut donc être source d'erreurs.


Sur un graphique représentant une fonction sinusoïdale, on voit qu'il est possible de faire coïncider par les points obtenus par échantillonnage une ou plusieurs courbes de plus grande longueur d'onde (fig. 47).



REPLIEMENT (aliasing)

alias, du latin : autrement. J-B Poquelin, alias Molière

propre au traitement numérique du signal

apparition d'une fréquence anormale

cause: échantillonnage insuffisant

repliement identique possible à partir de 2 fréquences différentes

possibilité de sons de combinaison (battements) entre une composante du signal complexe primitif et la fréquence de repliement.





Fig. 47. Le mécanisme du repliement.


L'analyse par échantillonnage d'un signal peut être source d'erreur par introduction d'un signal intercurrent. Si la fréquence d'échantillonnage (SR: sampling rate) du signal d'entrée (IS) est inférieure au double de la fréquence échantillonnée (ou de la fréquence la plus élevée des composantes d'un signal complexe), la fonction (le signal) cesse d'être correctement représentée. Il se produit alors une translation, un repliement, des composantes de fréquences les plus élevées en fréquences plus basses (A1 ou A2) (cf. le théorème de Cl. Shannon ( 1943).



Lorsque l'échantillonnage porte non plus sur un signal pur, sinusoïdal, mais sur un signal continu complexe résultant de composantes de diverses fréquences, les fréquences les plus élevées qui ne seront pas correctement échantillonnées seront représentées par une ou plusieurs fréquences d'ordre inférieur, alors qu'elles n'existent pas dans le signal primitif.


Les fréquences des composantes fréquentielles "aliases" sont reliées entre elles par l'équation


+ f1 = f2 + k f échant


équation dans laquelle f1 et f2 sont les fréquences de repliement (aliases) et féchant la fréquence d'échantillonnage.


Outre l'apparition de fréquences "fantômes", l'échantillonnage incorrect d'un signal complexe peut être source de sérieux problèmes par interférence de composantes fréquentielles de hautes et basses fréquences. En acoustique, la numérisation incorrecte d'un son pur pourra donc se traduire par l'apparition d'un autre son de fréquence moins élevée.



L'analyse des déplacements vibratoires par des capteurs régulièrement espacés le longueur d'une membrane est assimilable à celle d'un tracé, et on peut observer les mêmes phénomènes de repliement si la densité des capteurs (CCI) est insuffisante. En électronique, on peut éviter leur apparition en effectuant un échantillonnage à une cadence suffisamment élevée (ou par adjonction d'un filtre passe-bas). A l'inverse, en ce qui concerne l'échantillonnage cochléaire, on ne peut évidemment pas intervenir et augmenter la densité des capteurs de Corti, ni le nombre des fibres nerveuses auditives. On peut donc voir apparaître des fréquences "fantômes" qui n'existent pas en réalité dans le signal d'entrée acoustique. Ces fréquences constituent un élément de bruit qui peut provoquer des difficultés de reconnaissance des patterns membranaires.


Néanmoins, ces fréquences de repliement peuvent s'avérer utiles au sourd car elles constituent un codage naturel par transposition des fréquences non perçues.


Ce phénomène du repliement pourrait expliquer que:


- certains sujets au cours d'un test audiométrique tonal disent entendre un son sans aucune tonalité précise à la limite fréquentielle supérieure avant que ne disparaisse la sensation sonore;


- l'appareillage prothétique de certains sourds (sévères ou profonds) donne de meilleurs résultats lorsque toutes les fréquences sont amplifiées, même celles qui ne sont pas perçues. Dans ces cas d'espèce, il ne paraît pas nécessaire d'adjoindre un filtre passe-bande ni de déterminer une fréquence de coupure dans la prothèse.




8. Théorie de l'échantillonnage cochléaire et prothèse auditive.



Le rétablissement de la communication sonore par le port d'une prothèse auditive doit répondre à deux objectifs:

- élever le niveau sonore du signal acoustique au dessus du seuil du déficient auditif,

- transmettre sans distorsion les éléments informatifs du message acoustique et augmenter au maximum le débit informatif (en bit/sec) de ce message acoustique.


On apprécie classiquement la réalisation de ces objectifs par:

- la mesure du gain prothétique (aspect qualitatif),

- la comparaison des scores d'intelligibilité au moyen de listes de mots ou de phrases, avec et sans prothèse. Le recours à un spectrogramme peut compléter ce bilan en détectant de possibles distorsions de l'image du signal acoustique avant et après passage dans la prothèse.


Les aides auditives actuelles sont capables de transmettre une large bande de fréquences sonores entretenues à des niveaux sonores relativement élevés. Par contre, la transmission des transitoires par la prothèse continue de soulever de sérieuses difficultés, en raison même des modifications du signal acoustique:

- d'une part le délai imposé au signal par son passage au travers de l'appareil. Cette différence de temps peut atteindre 7 à 10 ms;

- d'autre part, les distorsions liées à la constante de temps des différents composants de la prothèse (micro et écouteur surtout), distorsions qui se manifestent par un étalement temporel des transitoires. Ces perturbations du signal par la prothèse concernent en particulier le transfert des phénomènes les plus brefs de la parole. Ces derniers peuvent même être totalement supprimés, lorsque survient, par exemple, un transitoire sonore alors que le précédent transitoire n'a pas entièrement disparu. A la limite, un appareil de conception médiocre peut significativement diminuer le pourcentage d'intelligibilité.


Il n'en demeure pas moins que, après passage du signal sonore au travers de la prothèse, quel que soit le mode de traitement du signal, analogique ou numérique, le pourcentage d'intelligibilité dépend en dernier ressort de la capacité d'échantillonnage du transducteur neuro-sensoriel cochléaire. Les meilleurs résultats sont évidemment obtenus dans la correction prothétique des surdités de transmission ( lésions tympano-ossiculaires, otospongiose, etc.…), même s'il existe un délai dans la transmission du signal acoustique et même si ce signal contient quelques distorsions. De toutes façons, ce signal peut être correctement échantillonné par l'oreille interne.


A l'inverse, les résultats sont inconstants dans la correction des surdités de perception, car l'élargissement du pas d'échantillonnage d'une part, et la prédominance quasi constante de lésions neuroendocriniennes à la base de la cochlée d'autre part, ne permet pas un échantillonnage correct des signaux les plus brefs. Pour compenser ces difficultés, on pourrait procéder à une élévation du niveau sonore, mais on est rapidement limité par la crainte de délivrer des niveaux sonores traumatisants. C'est pourquoi on a recours à des arrangements, soit par écrêtage des pics sonores les plus élevés (peak clipping), soit à une amplification avec compression. Mais en agissant sur les temps d'attaque et de rétablissement des transitoires, on modifie leurs caractéristiques temporelles, ce qui retentit sur la qualité et l'intelligibilité des signaux de la parole.


De plus, il ne paraît pas justifié de limiter la bande fréquentielle transmise par la prothèse (qui se comporte déjà comme un filtre passe-bande), même si la limite fréquentielle supérieure d'audibilité du sujet est abaissée. Par ce choix, on supprime les oscillations membranaires de fréquence élevée, ce qui ne permet plus par échantillonnage à partir des capteurs résiduels de la cochlée, la production de fréquences par repliement (aliases). On se prive alors d'un codage du message acoustique par transposition de fréquences et d'éléments informatifs nouveaux utiles à l'identification des messages.





Fig. 48. Degrés de surdité et formes sonores





On peut définir l'acuité auditive par la capacité de percevoir le plus petit phonon possible, chaque phonon, ou objet sonore élémentaire, étant déterminé par les seuils différentiels d'intensité ΔI, de fréquence ΔF et de temps ΔT.

Ainsi pour un champ auditif normal, l'acuité sera d'autant meilleure que les phonons seront plus petits (faibles ΔI, ΔF et ΔT) et plus nombreux. A l'inverse, si le champ auditif est rétréci (hypoacousie) ou si les phonons sont de plus grande taille que la normale (troubles de la discrimination), l'acuité sera d'autant plus altérée que les phonons seront moins nombreux.

Actuellement, la détermination du dT n'étant pas entrée en pratique courante, la reconnaissance de l'objet sonore est réduite à la reconnaissance d'une forme à 2 dimensions.

Une forme sonore peut donc être représentée par un graphe à 2 dimensions dans lequel chaque pixel (carré blanc en l'absence d'information, carré noir s'il existe une information sonore) correspond à un phonon. Selon le degré de la surdité quant au niveau (légère, moyenne, sévère ou profonde) et selon l'atteinte fréquentielle (rétrécissement du champ ou trouble de la sélectivité), les contours de cette forme sonore sont de plus en plus grossiers et ses contrastes de plus en plus flous, pouvant aller jusqu'à l'absence totale de reconnaissance.







Fig. 49. La correction des surdités et la reconnaissance des formes sonores.



La reconnaissance d'une forme sonore dépend de la capacité de discriminer les formes élémentaires qui la composent. Mis à part la mesure du ΔT qui reste délicate et peu pratiquée, on peut représenter une forme sonore par un assemblage de formes élémentaires définies par deux dimensions ΔI et ΔF.


En ce qui concerne les surdité de transmission, (dont les ΔI et ΔF ne sont pas modifiés) il suffit d'amplifier le niveau sonore pour reconnaître les formes sonores élémentaires composant la forme globale. Le contraste est maintenu, et de plus il est accentué.


A l'inverse, dans les surdités de perception, les formes élémentaires sont de plus grande dimension ( ΔI, ΔF et ΔT sont augmentés). Les pixels sont plus grands et moins nombreux. L'amplification n'est pas en mesure d'améliorer ni le contraste, ni la capacité de discrimination de la forme sonore. Comme le pas d'échantillonnage (de l'oreille interne) n'est pas modifié par la prothèse, la forme sonore reste floue.



9. Courbes audiométriques paradoxales et échantillonnage cochléaire







Surdité de perception avec élévation du seuil audiométrique tonal, sans troubles notables de l'intelligibilité. Ce type d'audiogramme est en faveur d'une atteinte diffuse du système cilié interne, sans atteinte prédominante de la base de la cochlée. L'analyse correcte des transitoires rend compte des bons résultats aux tests d'intelligibilité.






Exemple de surdité congénitale, avec presbyacousie débutante.





Evolution des courbes audiométriques tonales en cuvette. Le perte auditive du médium (partie en cuvette de la courbe) est significative d'une atteinte du système cilié externe. La raréfaction progressive des cellules ciliées internes et des neurones auditifs internes rend de plus en plus difficile l'échantillonnage des fréquences élevées. A l'amputation des sons du médium s'ajoute donc une amputation progressive des sons aigus.







De nombreuses courbes audiométriques tonales irrégulières ne résultent pas nécessairement d'erreurs d'appréciation des seuils par le sujet ou le testeur, mais sont en réalité des courbes composites:

En 1: élévation du seuil tonal par atteinte du système neuro-sensoriel externe;

En 2: perte associée des fréquences sonores élevées correspondant à l'atteinte du système neuro-sensoriel interne. Il en résulte une difficulté d'échantillonnage des transitoires les plus brefs et des troubles de l'intelligibilité du langage.



10. Codage de la parole. Implants cochléaires et échantillonnage cochléaire



La réhabilitation de la surdité profonde par implant cochléaire repose sur la stimulation par impulsions électriques intra ou extra-cochléaires des reliquats nerveux auditifs du sourd profond non appareillable.

En dehors de problèmes d'ordre anatomique, psychologique et social posés par l'implantation, et de la nécessité de s'appuyer sur une équipe multidisciplinaire compétente lors de la rééducation, un grand nombre de difficultés doivent être résolues. On peut regrouper ces exigences dans trois chapitres:


1. La prise en compte des données de l'électrophysiologie:


= la réponse de la fibre nerveuse obéit à la loi du tout ou rien (le stimulus électrique doit avoir une intensité suffisante),

= la réponse de la fibre est univoque: c'est une dépolarisation membranaire se traduisant par un spike sur l'écran du moniteur ou sur les tracés d'enregistrement;

= la cadence des spikes ne peut dépasser théoriquement 1000 c/s, en raison de la période réfractaire de la fibre nerveuse;

= le stimulus électrique ne doit pas détériorer les tissus par électrolyse: il faut donc prévoir une phase électrique positive après chaque phase de dépolarisation; malheureusement cette phase positive augmente la durée de la période réfractaire;

= chaque électrode est à l'origine d'un champ électrique relativement large. En conséquence, ce champ n'entraîne pas la stimulation d'une seule fibre, mais d'un groupe de fibres;

= il n'est pas possible de cloisonner électriquement le canal cochléaire en regard de chaque électrode, les tissus et les liquides se comportant comme des conducteurs;

= la jonction électrode-fibre nerveuse n'est pas aussi fine que la synapse neurosensorielle;

= le nombre limité d'électrodes (10 à 20 au maximum); au dessus, l'augmentation de leur nombre entraîne un chevauchement des champs électriques.



2. l'analyse de la parole


= du point de vue acoustique, la parole est un continuum sonore. Sur le plan informatif, c'est un signal acoustique redondant.

= elle transporte simultanément deux types d'information: une information esthétique et une information sémantique, la plus importante.

= le débit moyen d'information est d'environ 100 bits/s [50]. Il peut être réduit cependant à 50 bits/s sans entraîner de perte d'intelligibilité du message [30]. Mais ce débit est encore trop élevé par rapport aux possibilités de transport de l'information par les fibres restantes (environ 5 à 50 bits/s) ( ° )

= l'analyse de la parole doit extraire les éléments les plus signifiants et rejeter les autres. Il serait illogique de vouloir faire passer toute l'information de la parole dans un canal de communication rétréci.

= les procédés d'analyse-synthèse de la parole ont montré que la plus grande partie de l'information sémantique est supportée par les formants F1, F2, F3, par leur variation fréquentielle et par les rapports fréquentiel qui les unissent entre eux [26].

= actuellement, les techniques d'analyse de la parole reposent sur le principe d'une décomposition fréquentielle du signal par une série de bancs de filtres selon le principe du VOCODER; dans d'autres techniques, on ne retient que F2 ou F0.

= mais dans tous les cas, on privilégie l'information esthétique (les fréquences), ces choix étant guidés par le concept békésien du fonctionnement de l'oreille, concept basé sur l'existence d'une tonotopie cochléaire à la fois acoustique et électrique.





Fig. 51. Le canal auditif du déficient auditif

Alors que le débit des unités d'information est normal au niveau de l'émetteur et de la voie de transmission, il est réduit après traversée du maillon cochléaire.



3. le codage électrique de la parole


= le signal acoustique de la parole n'étant plus capté par l'oreille interne mais délivré directement sous forme d'impulsions électriques aux reliquats neurosensoriels, il est nécessaire d'effectuer une conversion de l'information acoustique en information électrique.


= le codage électrique doit se rapprocher au mieux de la transduction acoustique physiologique: conversion du signal mécanique membranaire en signal électrique neurosensoriel.


= deux paramètres physiques peuvent être conjointement retenus en vue de ce codage:

- la cadence des stimuli électriques, dont on sait que le maximum ne peut dépasser 600 à 700 coups par seconde,

- le siège de la stimulation électrique, qui dépend du nombre d'électrodes implantées.


= Si on retient le rythme de décharges sur les fibres pour coder l'intensité, il suffit de concevoir un codage spatial sur la MB.


= pour effectuer ce codage spatial, on a le choix entre deux procédures selon le modèle de fonctionnement de l'oreille considéré.


1. Soit, suivant la conception classique de la localisation fréquentielle cochléaire sur la MB (théorie de la tonotopie), on attribue une électrode de stimulation à chaque bande de fréquence du champ auditif. Dans ce type de codage, on admet que le support majeur de l'information de la parole est d'ordre fréquentiel, et qu'il existe également une tonotopie cochléaire électrique (chaque localisation membranaire est supposée réagir électriquement par une sensation de hauteur différente). Enfin, on en déduit qu'en augmentant le nombre d'électrodes implantées on augmente corrélativement le débit d'information.


Malheureusement, ce codage soulève un certain nombre d'objections:


- une partie de l'information de la parole supportée par les phénomènes transitoires n'est pas suffisamment prise en compte,


- les "images" électriques obtenues (assimilables à des formes de Savart) sont nécessairement grossières, peu précises en comparaison des formes acoustiques membranaires. Ce nouveau codage neural est pauvre de nature.


- ces images électriques de Savart ont pour caractéristique d'être particulièrement instables, en raison d'une part des variations de niveau de la voix chez un même locuteur, ce qui met en jeu un nombre variable de canaux du vocoder-analyseur pour un même mot ou une même phrase; d'autre part, du registre vocal du locuteur (les canaux initiés pour un même mot ne seront pas identiques s'il s'agit d'un locuteur homme, femme, ou enfant). Il en résulte que pour une même information de la parole, ces deux variables se traduiront par un nombre très élevé de configurations du codage électrique, et rendront difficile l'apprentissage, la mémorisation et la reconnaissance d'un nouveau langage ( °° ).


2. Soit, en se referant au concept de la théorie de l'échantillonnage cochléaire, on envisage une autre forme de codage électrique de la parole.


= comme le canal de communication d'une personne sourde est rétréci, il n'est pas possible de transmettre la totalité de l'information transportée par la parole. Il est donc nécessaire de procéder à un choix parmi les composants de la parole et de sélectionner ceux qui sont porteurs de la plus grande information (fig. 51).


= les données concernant l'analyse-synthèse de la parole montrent que l'information sémantique est plus importante que l'information esthétique. Cette information sémantique est principalement supportée par les variations fréquentielles des formants et par le rapport fréquentiel existant entre eux. C'est le second formant F2 qui possède la plus grande énergie.


= ainsi, (au lieu de stimuler simultanément toutes les électrodes en fonction des données du filtrage pour chaque bande) on pourrait ne détecter que les principaux formants de la parole F1, F2 et F3 (ou les pics d'intensité s'il s'agit de bandes de fréquence) à partir d'une analyse spectrale et suivre leur évolution fréquentielle dans le temps (fig. 52) [11].


= malheureusement la théorie de l'échantillonnage cochléaire montre qu'il faudrait disposer d'un grand nombre d'électrodes très rapprochées, donc disposer d'un pas d'échantillonnage relativement étroit, pour coder au mieux ces variations fréquentielles des formants entre eux. Ce qui exclu ce procédé.


= une solution plus simple serait de ne détecter que le F2 et de coder l'évolution fréquentielle de ce formant par une variation du pas de la stimulation électrique (plus le pas est large, plus la tonalité est grave). A cette fin, il faudrait disposer de deux points de stimulation, l'un fixe et situé par exemple à la base du tube cochléaire, l'autre de siège variable selon l'électrode stimulée. Le premier correspondrait à un formant virtuel tel que F0 ou F1, que l'on rendrait immobile, le second à la largeur du pas d'échantillonnage, donc représentatif de la fréquence sonore. Dans ce type de codage, les transitoires acoustiques (normalement plus ou moins étalés sur la MB) seraient également pris en compte par la vitesse de la variation fréquentielle du formant. On doit admettre cependant que l'intervalle minimum séparant deux électrodes est déterminant quant au codage de la limite fréquentielle supérieure. Cet intervalle minimum est nécessairement plus grand que le pas d'échantillonnage d'une oreille normale, ce qui abaisse la limite fréquentielle supérieure d'audibilité.





Fig. 52. Codage par transposition acoustique de la position fréquentielle des pics formantiques sur des bandes de bruit blanc discriminables par le sourd.


3. Enfin on peut faire abstraction des théories de l'audition et imaginer un dernier type de codage. Ce procédé consisterait à sélectionner les trois formants du signal acoustique de la parole (ou les bandes de fréquence dans lesquelles évoluent ces formants) et à coder sur trois électrodes intracochléaires fixes les variations fréquentielles des ces formants par une variation du rythme des impulsions électriques. Dans ce codage, l'intensité du signal acoustique ne serait pas représentée, mais par contre les variations réciproques des formants le seraient. Il est évident que ce codage ne pourrait concerner que des sujets n'ayant jamais entendu, afin de ne pas détruire leur mémorisation des sons. La réduction à trois du nombre d'électrodes implantées constituerait un avantage technique indéniable (fig. 53).





Fig. 53. Codage de la variation fréquentielle des pics formantiques en une modulation du rythme d'impulsions électriques rectangulaires au niveau d'électrodes intracochléaires. Ce type de codage, comme la plupart des codages actuels, doit être réservé aux surdités pré-labiques en raison de l'absence de mémorisation de patterns auditifs.



( ° ) Le reliquat auditif sur les graves correspond à une perception tactile et non sensorielle Identique à l'information tactile, laquelle ne dépasse pas 5 bits/s)


( °° ) Un neurone pouvant être stimulés jusqu'à environ 500 coups par seconde, il n'est pas prouvé qu'on n'effectue pas en fait sur tous les neurones résiduels du "clavier" cochléaire et quel que soit leur emplacement, un codage coup pour coup des fréquences les plus basses du signal de la parole. La reconnaissance de la hauteur correspondrait en fait à une reconnaissance spatiale après apprentissage de la zone de stimulation cochléaire (de la même manière qu'on reconnaît bien le siège d'un point de piqûre cutanée).



11. Acouphènes, bruit de fond cochléaire et échantillonnage cochléaire.



On évalue entre 17 et 30 pour cent le nombre de sujets qui présentent ou ont présenté dans leur vie des épisodes de bourdonnements d'oreille, proportion qui augmente avec l'âge. Dans la majorité des cas, ces bruits anormaux d'oreille, ou acouphènes, ont un début habituellement insidieux, mais ils peuvent aussi succéder à des causes bien précises: bruit, ototoxiques, …


La hauteur ou le timbre des acouphènes est très variable: plutôt de tonalité grave au cours de surdités de transmission et habituellement aiguë pour les surdités neuro-sensorielles. Dans ces derniers cas, les sujets évoquent un bourdonnement d'insecte, le murmure du vent, un chuintement, ou encore un sifflement. Parfois, ils présentent un caractère pulsatile, en particulier au cours des surdités de transmission. Quelquefois, lorsqu'ils revêtent un caractère continu comme dans les surdité de perception, ils peuvent avoir une répercussion psychologique de type obsessionnelle. Leur intensité est également très variable: de faible à très forte. S'ils sont toujours signalés dans le silence, ils peuvent être masqués par les bruits ambiants. Ils ne sont que rarement perçus par l'examinateur: dans la majorité des cas, ils sont purement subjectifs.


L'étiologie des acouphènes n'est pas toujours discernable. Ils peuvent, certes, survenir à la suite d'une lésions traumatique du système auditif (traumatisme sonore, traumatisme crânien), ou à la suite d'une atteinte toxique endogène ou exogène de l'oreille, ou au cours de la banale presbyacousie. Mais ils peuvent aussi se manifester sans perte auditive ni subjective, ni objective à l'examen audiométrique tonal. En l'absence de cause locale évidente, ils sont la plupart du temps bilatéraux. Enfin, les nombreux traitements qui ont été proposés sont généralement peu efficaces, voire sans effet (masking, médications, stimulation électrique). Au point qu'ils justifient quelquefois le recours à une prise en charge psychothérapique.


A signaler enfin que si on isole un sujet normo-entendant, ne se plaignant pas d'acouphènes, dans un milieu silencieux (cabine insonore, chambre sourde), il ressent rapidement un chuintement d'oreille. Cette sensation auditive, appelée "bruit de fond cochléaire" est un bruit physiologique.


En dépit de nombreuses hypothèses, la physiopathologie des acouphènes (d'origine neurosensorielle) reste obscure. On peut néanmoins, en s'appuyant sur le concept de l'échantillonnage cochléaire, proposer un modèle pathogénique qui intègre trois groupes de données: la production de spikes spontanés au niveau des fibres nerveuses, un dysfonctionnement du système nerveux feed-back auditif, et enfin l'absence de localisation fréquentielle cochléaire (de tonotopie).


1. Comme pour n'importe quelle fibre nerveuse de l'organisme, les neurones auditifs au repos sont le siège de dépolarisations spontanées discontinues, se traduisant sur les tracés électrophysiologiques par la survenue de spikes (pics) de cadence relativement lente, sans aucune synchronisation entre eux. A la suite d'un stimulus sonore, le rythme des décharges au niveau de chaque fibre augmente, et devient rythmique si le signal est périodique;


2. la systématisation nerveuse auditive efférente est celle d'un système anatomique formant une boucle de rétro-action négative (feed-back). Elle suggère, sur le plan fonctionnel, l'existence d'un mécanisme régulateur de type freinateur du rythme des spikes qui, après des relais successifs, vont gagner les aires auditives corticales (feed-back négatif). L'atteinte de ce système feed-back libère en conséquence la cadence de ces spikes.(configuration comparable au Gate Control concernant la douleur médullaire).


3. Si on retient la théorie de la localisation tonale cochléaire (tonotopie), il faudrait admettre qu'un acouphène de timbre aigu est l'expression de lésions et de dépolarisations spontanées des cellules et des fibres nerveuses strictement localisées à la base de la cochlée. Or cette hypothèse n'est pas compatible ni avec les dires d'un sujet qui ne ressent aucun déficit auditif, ni avec des constats audiométriques absolument normaux.


Inversement, la théorie de l'échantillonnage cochléaire démontre que pour percevoir un son entretenu quelconque, le pattern de l'excitation neurosensorielle doit être réparti sur l'ensemble de la membrane basilaire. Avec un pas d'échantillonnage très étroit et synchrone, la perception correspond à celle d'un son très aigu. Si ce même échantillonnage des cellules et des fibres est désynchronisé, la perception devient alors celle d'un bruit blanc. On est donc en droit de penser que les acouphènes décrits souvent par ces sujets comme un chuintement correspond à une dépolarisation spontanée et aléatoire des fibres du nerf auditif, dépolarisation non régulée par un dysfonctionnement du système afférent retro-actif. De plus, en fonction de la densité des fibres dépolarisées, ce bruit aléatoire pourra revêtir un timbre plus ou moins aigu.


L'adjonction d'un son pur au signal nerveux spontané aléatoire redonne une certaine synchronisation des décharges nerveuses (émergence du signal sur le fond, de la gestalt-théorie).


Enfin, ce concept de décharges spontanées aléatoires tant du point de vue temporel sur chaque fibre que du point vue spatial sur l'éventail des fibres nerveuses auditives constitue un modèle original au bruit de fond cochléaire physiologique.






CONCLUSION




En dépit du confort intellectuel qu'il procure par sa simplicité, le concept békésien de la tonotopie cochléaire doit être abandonné, avant tout parce que de nombreuses données de la psychoacoustique ne sont absolument pas compatibles avec ce modèle. Il ne résiste pas, d'autre part, aux critiques que peuvent formuler à son encontre les physiciens et les spécialistes du traitement du signal, qui auraient bien voulu concevoir et disposer dans la pratique d'un tel appareil d'analyse spectrale, si simple et de volume si réduit! Enfin, on ne peut qu'être surpris de l'obstination avec laquelle les spécialistes de l'audition s'accrochent envers et contre tout à ce dogme de la tonotopie, complété de mille façons pour en maintenir la crédibilité, et ne manifestent ni esprit critique, ni la moindre velléité de se remettre en cause.


Examinée sous son aspect mécanique, l'oreille interne n'est pas aussi sophistiquée qu'on a bien voulu l'imaginer. Il n'est pas nécessaire de lui attribuer une fonction de décomposition spectrale comme le ferait un analyseur de fréquence, mais une fonction d'analyse de formes membranaires engendrées par le signal acoustique. La reconnaissance de ces formes (ou patterns) par digitalisation est suffisante. L'essentiel est qu'un signal acoustique donné donne toujours naissance à une même forme cochléaire (pour une oreille donnée). Point n'est besoin que le tube osseux cochléaire soit d'une perfection géométrique idéale, ni que l'oreille interne ait exactement la même forme d'un individu à l'autre. L'anatomie comparée nous en apporte la preuve. Son efficience ne dépend que de la capacité d'analyse spatiale et temporelle, de la finesse de décomposition de l'image, plus précisément du diamètre des mailles du réseau sensoriel, et du nombre de fibres nerveuses affectées à chaque cellule ciliée.


Le concept de l'échantillonnage cochléaire a le mérite d'être compatible avec les nombreuses données d'anatomie, de micromécanique et de neurophysiologie. Il apporte un éclairage nouveau à de nombreux paradoxes de la psychoacoustique. Il a l'avantage d'intégrer l'oreille dans le schéma général de la communication. Il permet de relier entre elles la psychoacoustique, la neurophysiologie et l'audiologie.


C'est aussi un modèle qui donne une vision différente de certaines difficultés otologiques rencontrées en pratique clinique. Il fournit, par exemple, une lecture originale des courbes audiométriques tonales des surdités de perception. Sa confrontation avec les théories conventionnelles de l'audition pendant une quinzaine d'années nous a permis d'en apprécier les avantages. Il n'est pas nécessaire de prévoir une longue période d'adaptation pour en assimiler les principes et se familiariser complètement avec lui. Rien n'interdit d'ailleurs aux sceptiques de se servir des deux modèles.


A la lumière de récentes recherches fondamentales, il semble bien que l'on perpétue une confusion regrettable entre deux termes: tonotopie et cartographie cochléaires. De nombreux travaux montrent qu'il existe effectivement une projection corticale, spatiale, des différentes zones de la cochlée, ainsi qu'une représentation spatiale des voies neuronales. Mais si cette projection anatomique correspond bien à une cartographie de la cochlée, à une topographie, cela ne signifie nullement qu'il s'agit d'une projection fréquentielle, tonotopique.


De nombreux modèles de fonctionnement du système auditif ont été proposés, en particulier des modèles mathématiques et des modèles électriques. Tous reposent sur une donnée de base, à savoir l'existence d'une décomposition fréquentielle cochléaire. Rien de surprenant à ce qu'aucun d'entre eux ne se soit imposé. Depuis peu, technicité oblige, on a recours à des modèles computationnels dans lesquels il est évidemment possible de faire intervenir de nombreux paramètres, et en particulier la dimension temporelle des messages auditifs, la cochlée effectuant un double codage spectral et temporel. Il est à craindre que l'on continue de se heurter à une même impasse, tant que persistera le concept de sélectivité fréquentielle cochléaire.




REFERENCES BIBLIOGRAPHIQUES




1. Békésy G. von. Zur Theorie des Hörens. Die Schwingungsform der Basilarmembran. Physic. Z., 1928; 29: 793-810.


2. Békésy G. von. Experiments in Hearing. 1960; McGraw-Hill Book Company. New York.


3. Békésy G. von., Rosenblith, W.A. The Mechanical Properties of the Ear. Handbook of Experimental Psychology. John Wiley & Sons, New York. 1951; 1O75-1115.


4. Bosquet J. Un modèle synthétique linéaire de la fonction auditive monaurale. Rev. Acoust., 1977; 42: 209-225.


5. Brownell W.E. Microscopic observation of cochlear hair cell motility. Scann. Electron. Microscopy. 1984; III: 1401-1406.


6. Brownell W.E. Observations on a motile response in isolated outer hair cells. In: Webster W.R., Aitk L.M., Eds. Mechanisms of Hearing. Clayton, Australia: Monash University Press, 1983: 5-10.


7. Carrat R. Réponse d'une membrane dans un modèle mécanique cochléaire à des sons purs, transitoires ou bruit blanc. C.R. LXXII Congr. Fr. Oto-rhino-laryng., Paris, 1975; Arnette édit., Paris, 1976, 189-197.


8. Carrat R. Influence des paramètes expérimentaux sur la réponse de modèles mécaniques cochléaires. Implications dans la physiologie de l'audition. Rev. Acoust. (Paris), 1979; 12:189-196.


9. Carrat R. Mécanique cochléaire: nouvelles données expérimentales. Ann. Oto-Laryngol., Paris, 1979; 96:23-48.


10. Carrat R. Traumatisme sonore et scotome auditif: proposition d'un modèle pathogénique. Rev. Acoust., Paris, 1981; 14: 110-114.

11. Carrat R. Analysis and Synthesis of Speech Regarding Cochlear Implant. Acta Otolaryngol (Stockh) 1984; Suppl. 411:85-94.


12. Carrat R. Théorie de l'échantillonnage cochléaire. Arnette édit. Paris. 1986.


13. Carrat R, Carrat X., Enard A., Durivault J. La reconnaissance des formes sonores dans les surdités de perception. Comm. LXXXVIII Congr. Fr. d'Oto-Rhino-Laryngologie. Paris, 1991.


14. Carrat R., Carrat X., Enard A., Durivault J. La correction prothétique des surdités et la reconnaissance des formes sonores. Comm. LXXXVIII Congr. Fr. d'Oto-Rhino-Laryngol., Paris, 1991.


15. Carrat R., Durivault J. Cochlée et bruit blanc: approches expérimentales. Comm. 12° Ass. Nat. Proth. Audit., Tours, 1974.


16. Carrat R., Durivault J. Influence des conditions expérimentales sur le signal délivré par un diapason à un modèle mécanique cochléaire. Rev. Acoust., 1978; 11:22-24.


17. Carrat R., Thillier J.L. Réponse d'une membrane dans un modèle cochléaire à des sons entretenus et à des transitoires. C.R. Soc. Biol., 1976; 170:900-903.


18. Carrat R., Thillier J-L., Durivault J. Le seuil auditif au bruit blanc. Ann. Oto-Laryng., Paris, 1975; 92:585-600.


19. Carrat R., Thillier J-L. La mesure de l'acuité auditive par le bruit blanc. Ann. Oto-Laryng., Paris, 1976; 93:487-500.


20. Chocholle R., Botte M.C., Da Costa L. Largeurs de bande nécessaires pour une perception non déformée du caractère tonal d'un bruit blanc à divers niveaux de ce dernier. Audiology, 1974; 13:140-146.


21. Deol M. S., Gluecksohn-Waelsch S. The role of inner cells in hearing. Nature, 1979; 278: 250-252.


22. Escarpit R. Théorie générale de l'information et de la communication. Hachette Université. Partis.1976.


23. Evans, E.F. Place and Time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiology, 1978; 17: 369-420.


24. Evans, E.F., Wilson, J.P. The frequency selectivity of the cochlea. Basics Mechanisms in Hearing. A.R. Moller. Academic Press, New York, 1973; 519-554.


25. Ferman L., Vershuure J., Van Zanten B. Impaired Speech Perception in Noisein Patients with a Normal Audiogram. Audiology, 1993; 32:49-54.


26. Flanagan J.L. Speech Analysis Synthesis and Perception. Springer-Verlag. New York. 1983.


27. Flock, A., Brestcher A., Weber, K. Immuno-histochemical localization of several cytoskeletal proteins in inner ear sensory and supporting cells. Hearing Res., 1982; 7: 75-89.


28. Gold, T. Hearing II. The physical basis of the action of the cochlea. Proc. Roy. Soc., 1948; B 135: 492-498.


29. Goldstein, J.L. Mechanisms of signal analysis and pattern perception in periodicity pitch. Audiology, 1978; 17: 421-445.


30. Guibert J. La parole. Compréhension et synthèse par les ordinateurs. P.U.F. Paris.1979.


31. Hawkins J.E, Johnsson L-G. Patterns of Sensorineural Degeneration in Human Ears Exposed to Noise. in Effects of Noise on Hearing. Edit. by Henderson D., Raven Press, New York, 1976; 91-110.


32. Huggins, W.H. Phase principle for complex-frequency analysis and its implications in auditory theory. J. A. S. A., 1952; 24: 582-589.


33. Husson R. La physiologie de la phonation, du langage oral et de l'audition, de Helmholtz à nos jours. Rev. Soc. Fr. Etudes correction audit., 1970; 14:19-32.


34. Iurato S. Efferent fibers to the sensory cells of Corti's organ. Exp. Cell. Res., 1962; 27:162.


35. Kemp D.T. Stimulated acoustic emissions from the human auditory system. J. Acoust. Soc. Am., 1978; 64: 1386-1391.


36. Kemp, D.T. Otoacoustic emissions, travelling waves and cochlear mechanisms. Hearing Res., 1986; 22: 95-104.


37. Kimura R.S., Wersall J. Termination of the olivocochlear bundle in relation to the outer hair cells of the organ of Corti in guinea pig. Acta Otolaryngol., (Stockh.), 1962; 55:11-32.


38. Korn T.S. La notion de la fréquence du son. Acoustica, 1968; 20: 55-61.


39. Korn T.S. Theory of audioinformation. Acoustica, 1969-1970; 22: 336-344.


40. Lafon, J.Cl. Sur la théorie impulsionnelle de la phonation et de l'audition. Bull. Audioph., 1962; 6: 3-16.


41. Lafon J-Cl. Etude microtemporelle de l'audition. Bull. Audiophonol., 1976; 6:75-78.


42. Leipp E. La machine à écouter. Essai de psyschoacoustique.

Masson Edit., Paris, 1977.


43. Loeb G. Le remplacement des organes fonctionnels de l'oreille. Pour la Science, 1985; 90: 32-39.


44. Mercier J. Traité d'acoustique. P.U.F. Paris, 1962.


45. Moles A. La communication. Retz édit., Paris, 1971.


46. Morrison D., Schindler R.A., Wersall J. A quantitative analysis of the afferent innervation of the organ of Corti in guinea pig. Acta Otolaryngol., (Stockh.), 1975; 79:11-23.


47. Nomura Y. Nerve fibers in the human organ of Corti. Acta Oto Laryngol. (Stockh.), 1976; 82:317-324.


48. Osborne, N.P., Comis, S.D., Pickles, J.O. Morphology and cross-linkage of stereocilia in the guinea pig labyrinth examined without the use of osmium as a fixative. Cell tissue res., 1984; 237: 43-48.


49. Pierson A. Déficits auditifs produits par certaines stimulations sonores. Rev. Acoust., Paris, 1977; 9: 301-318; 10: 147-158.


50. Pimonow L. Vibrations en régime transitoire. Dunod édit., Paris, 1962.


51. Pujol, R. Neuropharmacology of the cochlea and tinnitus. Tinnitus 91, Proc. of the Fourth Intern. Tin. Sem., Kugler Pub. Amsterdam/New york., 1992; 103-107.


52. Russel, I.J., Sellick, P.M. Intracellular studies of hair cells in the mammalian cochlea. J. Physiol., 1971; 284: 261-290.


53. Schouten, J.F. The perception of pitch. Philips Tech. Rev., 1940;, 5: 286-294.


54. Schuknecht H.F., Gacek M.R. Cochlear pathology in presbycusis. Ann. Otol. Rhinol. Laryngol., 1993; 102:supp 158.


55. Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J., 1948; 27:379-343, 623-656.


56. Shannon C.E., Wever W. The Mathematical Theory of Communication. Urbana, University of Illinois Press, 1949.


57. Smith C.A., Rasmussen G.L. Recent observation on the olivocochlear bundle. Ann. Otol. Rhinol. Laryngol., 1963; 72:489-505.


58. Spoendlin H. The Organization of the Cochlear Receptor. Karger S., Basel, 1966.


59. Spoendlin H. Ultra structure and peripheral innervation pattern of the receptor in relation to the first coding of the acoustic message. Hearing Mechanisms in vertebrates. J & A. Churchill LTD, London, 1968; 89-118.


60. Spoendlin H. Innervation pattern in the organ of Corti of the cat. Acta Otolaryngol., (Stockh.), 1969, 67:239-254.


61. Spoendlin H. Innervation densities of the cochlea. Acta Otolaryngol., (Stockh.), 1972, 73:235-248.


62. Spoendlin H. Neuroanatomy of the Cochlea. In Facts and Models in Hearing, Springer Verlag, Berlin, 1974; 18-36.


63. Spoendlin H. Retrograde degeneration of the cochlear nerve. Acta Otolaryngol., (Stockh.), 1975; 79:226-275.


64. Spoendlin H. Neuroanatomical Basis of cochlear coding mechanisms. Audiology, 1975; 14:383-407.


65. Spoendlin H. Organization of the auditory receptor. Rev. Laryngol., Bordeaux, 1976; 97:453-462.


66. Spoendlin H, Gacek R. Electron microscopic studies on the efferent and afferent innervation of the organ of Corti in the cat. Ann. Otol. Rhinol. Laryngol., 1963; 72:660-684.


67. Tonndorf J. The mechanism of hearing loss in early cases of endolymphatic hydrops. Ann. Otol., 1957; 66:766-784.


68. Walby A.P., Barrera A., Schucknecht H.F. Cochlear Pathology in chronic suppurative otitis media. Annals of Otol. Rhinol. Laryngol., 1983; 92: 2, suppl. 103.


69. Weaver, W., Shannon C.E. Théorie mathématique de la communication. Retz édit., Paris, 1975.


70. Wever, E.G. Theory of hearing. John Wiley & Sons, New York. 1949.


71. Wever, E.G., Bray, C.V. Present possibilities for auditory theory. Psychol. Rev., 1930; 37:365-380.


72. Wightman, F.L. The pattern transformation model of pitch. J. Acoust. Soc. Am., 1973; 54: 406-416.


73. Winckel F. Vues nouvelles sur le monde des sons. Dunod, Paris, 1960. (french traduct. of Klangwelt unter der Lupe, Verlag, Berlin).




Télécharger le document en PDF

Retour